PROMETHEUS

PRivacy preserving pOst-quantuM systEms from advanced crypTograpHic mEchanisms Using latticeS

DAMIEN STEHLÉ

CONTEXTE H2020 DE PROMETHEUS

Call: H2020-DS-2016-2017 (Digital Security Focus Area)

Topic: DS-06-2017 (Cybersecurity PPP: Cryptography)

Type of action: RIA (Research and Innovation Action)

Montant demandé : 5,496,968.75 EUR **Montant accordé** : 5,496,968.75 EUR

Evaluation: 15/15

Durée: 48 mois à partir du 01/01/2018

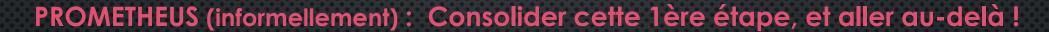
LE CONSORTIUM

Partenaires académiques	Partenaires industriels
Ecole Normale Supérieure de Lyon ^{.FR}	Orange SA .FR
Université de Rennes I ^{.FR}	Thales Communications and Security .FR
Universitat Politecnica de Catalonya ^{.ES}	Scytl Secure Electronic Voting .ES
Centrum voor Wiskunde en Informatica . ^{NL}	Toegepast Natuurwetenschappelijk Onderzoek (TNO) ^{.NL}
Royal Holloway ^{.UK}	
Ruhr Universität Bochum ^{.DE}	IBM Research ^{.CH}
Weizmann Institute of Science .IL	

CONTEXTE SCIENTIFIQUE

Cryptographie: fondement mathématique / algorithmique de la sécurité digitale

Problèmes calculatoires difficiles


Factorisation de grands nombres, Logarithmes discrets, etc. Protocoles cryptographiquement sûrs Signatures digitales, échange de clés, chiffrement, etc.

GROS SOUCI EN VUE: Si un ordinateur quantique est construit, alors


- Les problèmes « difficiles » utilisés aujourd'hui deviennent faciles
- La sécurité des protocoles utilisés aujourd'hui est anéantie

PROMETHEUS

- Cryptographie reposant sur les réseaux Euclidiens
 - Principale alternative post-quantique (cf processus de standardisation NIST)
 - Plus expressif, plus rapide
 - Les briques élémentaires (chiffrement, signature) sont déjà bien comprises

- ❖ E-cash
- E-voting
- Coopération pour la cyber-intelligence

CONSTRUCTION DU PROJET

Un projet assez en amont, avec un poids académique fort

- Les participants académiques se connaissent depuis longtemps
- Utilisation de collaborations académie industrie pérennes
 - ENS de Lyon Orange
 - CWI TNO

- CWI Thales
- UPC Scytl

Un impact potentiellement très important

Un ordinateur quantique anéantirait la sécurité digitale actuelle

Organisation de la soumission

- Un duo de choc (B. Libert et S. Canard)
- Un soutien au montage de projets de grande qualité, à l'ENS de Lyon (Q. Touitou)

LA CRYPTO A L'ENS DE LYON

http://www.ens-lyon.fr/LIP/AriC/crypto

Au sein de l'équipe Aric du LIP [UMR CNRS, ENS de Lyon, INRIA, U. Lyon 1, U. Lyon]

3 permanents

6 post-docs, 1 ingénieur CDD, 9 doctorants

=> 11 nationalités

Thèmes de recherche

- Réseaux Euclidiens
- Protocoles et preuves cryptographiques
- Théorie algorithmique des nombres

Financements actuels

ERC-Starting LattAC

[réseaux Euclidiens]

ANR Alambic

[malléabilité en cryptographie]

BPI-DGE RISQ

[regroupement de l'industrie française pour la sécurité post-quantique]

H2020 PROMETHEUS