

IMT – Télécom ParisTech, Mines Saint-Etienne

Jean-Luc Danger jean-luc.danger@telecom-paristech.fr 0682035957

Targeted topics

All Topics requiring Secure and Safe embedded systems as:

SU-DS03-2019-2020: Sub-topic 1: Protecting citizens' security, privacy and personal data protection
 SU-DS03-2019-2020: Sub-topic 2: Small and Medium-sized Enterprises and Micro Enterprises (SMEs&MEs): defenders
 SU-DS05-2018-2019: Sub-topic a (2019): Digital security and privacy in multimodal transport
 SU-DS05-2018-2019: Sub-topic b (2019): Digital security and privacy in healthcare ecosystem
 SU-INFRA01-2018-2019-2020: Combined physical and cyber threats
 SU-INFRA02-2019: Security for smart and safe cities, including for public spaces

Project idea: SEC² "SECurity leveraged by Semi-Conductors"

Security and Safety are two major challenges in all future applications, but if we look at device level:
Attacks always improve: cyber but also physical attacks
Root-of-Trust to ensure End-to-End security must be seriously protected in the device.
Device Reliability decreases in recent

technologies

What can we do at device level ?

SEC²

Main Goal: Deep **analyzis** of security and reliability of applications using new semiconductor technologies to propose novel **methods** and architectures **to enhance security and reliability** *Technical Objective:* Use **intrinsic features** of new Semiconductors technologies like FD-SOI , MRAM, PCM Ram, 3D ... to **leverage the security**, compensate reliability flaws and turn weaknesses into strength

FD-SOI new property: Back-Biasing

• BB allows to get **Steady and Unique** elements: Robust Physically Unclonable Function **PUF** as **Root of Trust**

The other unstable elements: High quality Randomness
 => Robust True Random Number Generator TRNG for
 Crypto

MRAM new property: Stochastic switching **behavior**

2. Stochastic computing

 $X_{1}: 0101101100 \quad P_{x1} = 0.5 \qquad X_{2}: 001010110 \quad P_{x2} = 0.4$

XOR

 $P_Y = P_{x1} + P_{x2} - 2P_{x1}$. $P_{x2} = 0.5$ $P_Y = P_{x1}$. $P_S + P_{x2}$. $(1 - P_S) = 0.45$

1. True random number generator Distribution of Monte Carlo Trials

3. Approximate computing

-2 1+1=2 1+1=2 1+1=	
1+1=2 1+1=2 1+1=2	
2 + 1 + 1 = 2 + 1 + 1 = 2 + 1 + 1	10
1+1=2 $1+1=3$ $1+1=2$	-
	•
1+1=2 1+1=2 1	
+1=2 $1+1=2$ $1+1=2$	4
1+1=2 1+1=2 1	L-
1=2 1+1=2 1+1=	2
1110 1110	
1+1=2 1+1=2	
=2 1+1=2 1+1=	_
1+1=3 1+1=2	Г
0 111-0 111	

SEC²

National Partners

Télécom ParisTech (academics) Mines St-Etienne (academics) ST Microelectronics (Big SC company) Secure-IC (SME) CEA Tech

Looking for Partners :

For security/safety use cases International, already interested :

- TU Delft
- INL Braga

Looking for relevant H2020 calls :

SEC² is basically a technological subject which could be part of an applicative H2020 project