BATTERY 2030+ At the heart of a green and connected society

A Large-Scale European Research Initiative on Future Battery Technologies

Dr. Simon Perraud, CEA Prof. Jean-Marie Tarascon, Collège de France

BATTERIES WILL CONTRIBUTE TO THE DECARBONIZATION OF THE TRANSPORT SECTOR

BATTERIES WILL CONTRIBUTE TO THE DECARBONIZATION OF THE TRANSPORT SECTOR

Notes: PLDVs = passenger light duty vehicles; LCVs = light commercial vehicles; BEVs = battery electric vehicles; PHEV = plug-in hybrid electric vehicles.

BATTERIES WILL ALSO CONTRIBUTE TO THE DECARBONIZATION OF THE POWER SECTOR

LITHIUM-ION BATTERY MARKET IS BOOMING

5 JRC, 2018

Battery Blastoff

Demand for energy storage is forecast to rise as prices fall

Data: BloombergNEF; graphic by Bloomberg Businessweek

LITHIUM-ION BATTERY VALUE CHAIN

LITHIUM-ION BATTERY INDUSTRY IN EUROPE

- The European lithium-ion battery industry is strong in the upstream part (battery materials) and downstream part (electric vehicles, recycling) of the value chain
- The core part of the value chain (battery cells) is witnessing significant changes:
 - Installation of large manufacturing capacities in Europe by some Asian players
 - Several industrial projects led by European players, with the support of Member States and the European Commission
- In this context, the European research community has a crucial role to play to support the European industry along the full value chain

LITHIUM-ION BATTERY SHORT-TO-MEDIUM TERM R&I

Source: Umicore

BATTERY 2030+ VISION FOR LONG-TERM R&I

- Inventing the batteries of the future
- Providing breakthrough technologies to the European battery industry across the full value chain
- Enabling long-term European leadership in both existing markets (road transport, stationary energy storage) and future emerging applications (robotics, aerospace, medical devices, internet of things, ...)

Ultrahigh performances

Smart functionalities

Environmental sustainability

BATTERY 2030+ RESEARCH AREAS

BATTE 203	BAT RY • 4 + • 1 • 0 • F	TERY 2030+ RESEARCH AREAS: Accelerated battery material discovery & interface engineering ntegration of smart sensing & self-healing functionalities Cell design & manufacturability (cross-cutting) Recyclability (cross-cutting)	
		FUTURE BATTERY CHEMISTRIES	
		POST-LITHIUM BATTERY CHEMISTRIES Sodium-ion, multivalent metal-ion, metal-air, etc.	
	>	LITHIUM BATTERY CHEMISTRIES Gen 5 (lithium-air, lithium-sulfur) Gen 4 (all-solid-state lithium-ion or lithium-metal) Gen 3 (advanced lithium-ion)	BATTER $2\Theta 3$

 \checkmark

ACCELERATED BATTERY MATERIAL DISCOVERY & INTERFACE ENGINEERING

MATERIALS ACCELERATION PLATFORM Self-driving laboratory for autonomous discovery and optimization of materials and interfaces

10× acceleration of the development cycle

Energy & power densities approaching the theoretical limits

Outstanding lifetime & reliability

Particles and

Interfaces

1 ms 1s ... // .

Electro

transfe

Ed Vi ↓ 1 fs

Electronic and

Vibr. Dynamics

105

Molecular

Transport, Phonons

1 us

Time

1 ns

Operando, in line

characterization of

battery interfaces

materials and interfaces 20 nm

SMART SENSING & SELF-HEALING FUNCTIONALITIES

v research challenges

Sensors also serve to identify defective components and local spots in the cell that need to be repaired

Develop self-healing processes

Batteries 2030⁺ could be the driver to launch this revolutionary era of rechargeable batteries taking advantage of self-healing via the use of proper chemical processes

ENDORSE BATTERY 2030+

- Receive regular news about BATTERY 2030+
- Be involved in the roadmap elaboration process (written consultation and stakeholder workshop)
- Support a large-scale and long-term European research initiative on future battery technologies

http://battery2030project.eu

