Modèle ENSD ©NEOPTEC		_	\equiv	=																=	
Nom: (Suivi, s'il y a lieu, du nom d'épouse)			L	L																	
Prénom :																					
N° d'inscription :	(Le nur	néro es	st celui.	qui fiqu	re cur l	2 0001/0	ocation	ou la fe	wille d'	ámarae		é(e)	le :		/		/				
	Con			<u>qur ngur</u>		Sect				emarge	-ment)	!	Epre	uve				Mati	ère		

EAI STI 1

DR 1 DR 2 DR 3

Document-réponse nଂ1 (DR1)

Réponses à la question 1 :

Expressions littérales des grandeurs physiques suivantes :

V _F : Vitesse	fond	(nœuds)
--------------------------	------	---------

V _F =			
	V _F =		

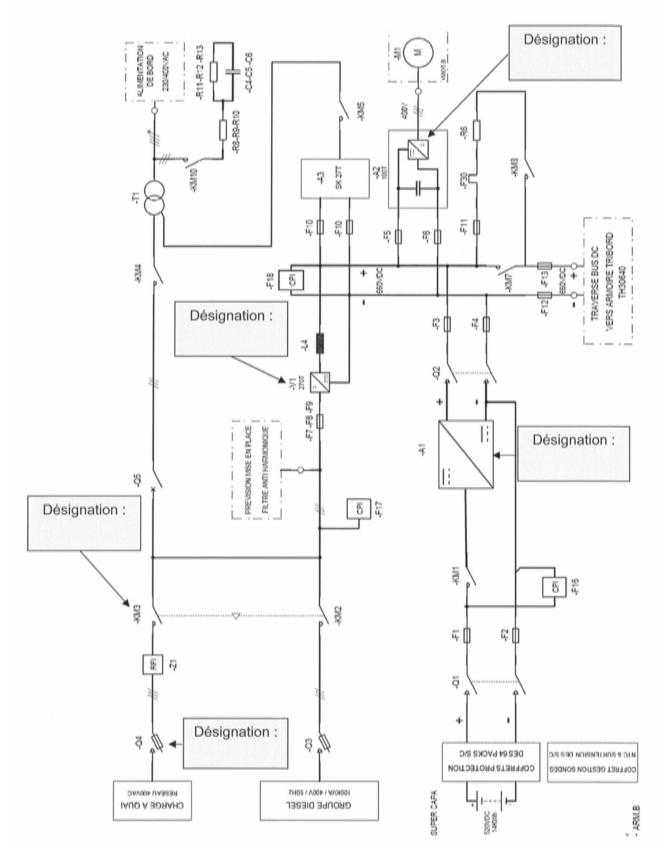
∆t : Durée pour parcourir un tronçon du trajet (min)

$\Delta t =$					

W : Energie nécessaire pour parcourir un tronçon du trajet (kW.h)

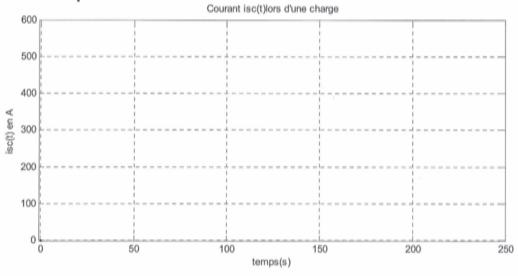
W =		

W_T: Total énergie par aller-retour (kW.h)

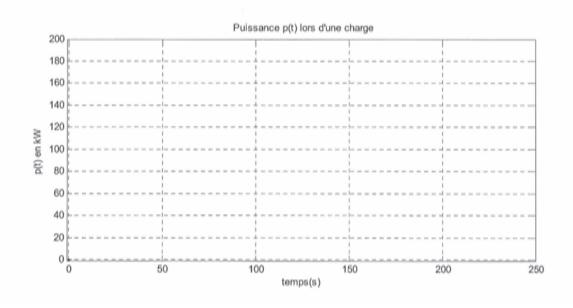

$W_T =$	

Réponses à la question 2 :

	Pen Mané	rade	avant port	Quai des Indes	avant port	rade	Pen Mané
D : Distances (milles)		0,50	0,30		0,30	0,50	
V _L : Vitesses Loch (nœuds)		8,00	5,00		5,00	8,00	
V _c : Vitesses courant (nœuds)		2,00	0,00		0,00	-2,00	
V _F : Vitesses fond (nœuds)							
Δt : Durées (min)				8,00			
P : Puissances (kW)				15,00			
η : Rendement réducteur et moteur		0,90	0,90	0,90	0,90	0,90	
P _s : Puissance des servitudes (kW)		10,00	10,00	10,00	10,00	10,00	
W : Energie consommée (kW.h)							
W_T : Total énergie par aller-retour (kW.h)							

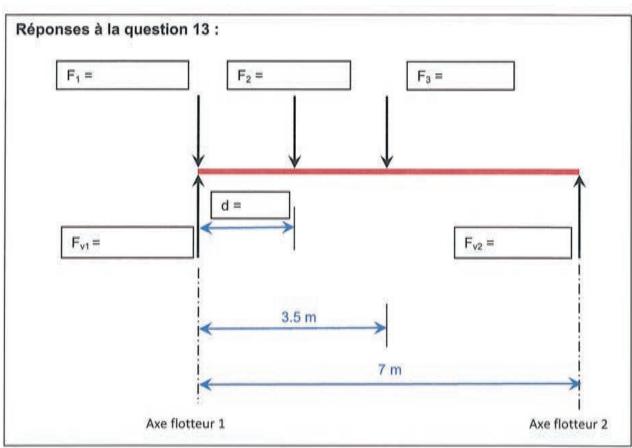

Document-réponse nº2 (DR2)

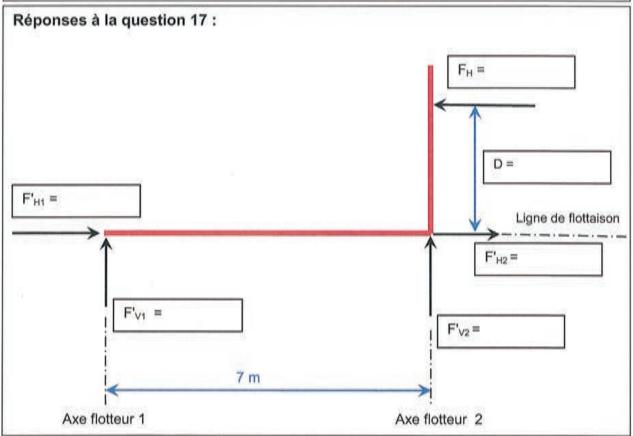
Réponses à la question 30 :



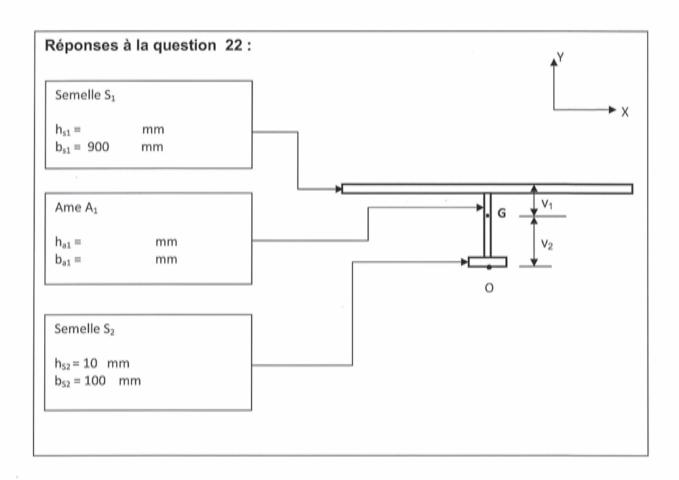
Document-réponse n³ (DR3)

Réponses à la question 37 :




Modèle ENSD ©NEOPTEC		_	\equiv	=																=	
Nom: (Suivi, s'il y a lieu, du nom d'épouse)			L	L																	
Prénom :																					
N° d'inscription :	(Le nur	néro es	st celui.	qui fiqu	re cur l	2 0001/0	ocation	ou la fe	wille d'	ámarae		é(e)	le :		/		/				
	Con			<u>qur ngur</u>		Sect				emarge	-ment)	!	Epre	uve				Mati	ère		

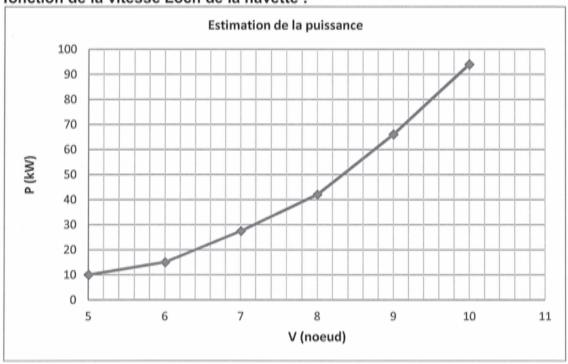
EAI STI 1


DR 4 DR 5 DR 6

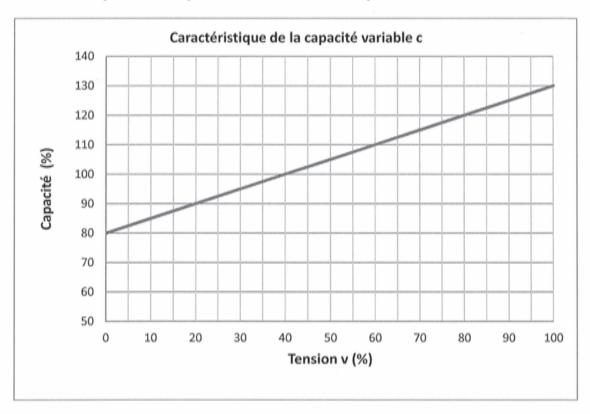
Document-réponse nº4 (DR4)

Document-réponse n°5 (DR5)

Réponses à la question 23 :

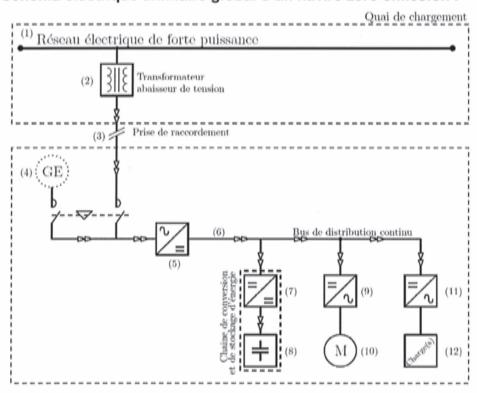

Aire en m²	OG en m	I _{GX} en m ⁴	v₁ en m	v ₂ en m	I _{GX} /v ₁ en m ³	I _{GX} /v ₂ en m ³
	0.128	2,32958E-05				

Document-réponse n[®] (DR6)

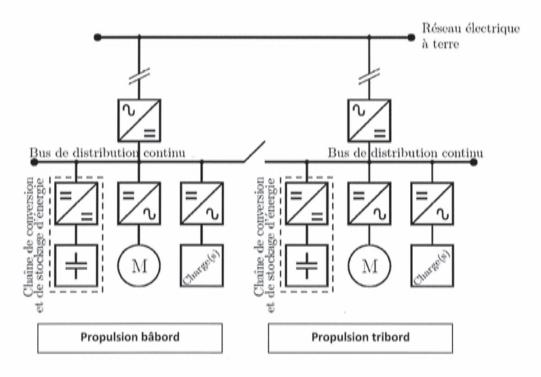

	Température en °C	Pression en Bar	Enthalpie en KJ/Kg	Etats du fluide	Transformation d'un point à l'autre
Point 1				,	
Point 2					
Point 3					
Point 4					
Point 5					
Point 6					

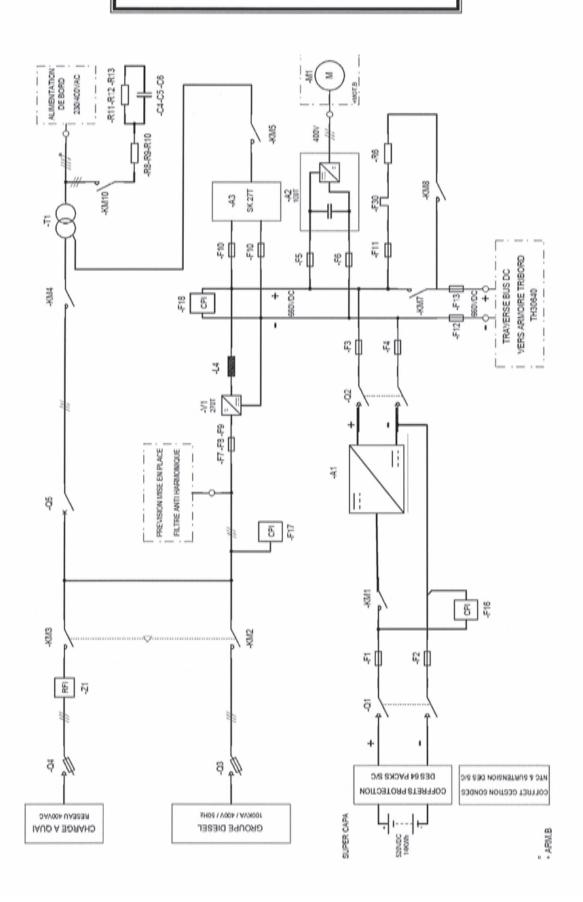
DT1

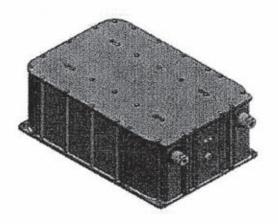
Puissance mécanique totale en amont des hélices des propulseurs azimutaux en fonction de la vitesse Loch de la navette :



Caractéristique de la capacité variable c d'un supercondensateur:




Schéma électrique unifilaire global d'un navire zéro émission :


Schéma électrique unifilaire de principe de la navette Ar Vag Tredan :

DT3 Synoptique propulsion bâbord

DT4 Modules de supercondensateurs M65V375F de BatScap

Specifications:

Electrical characteristics	
Capacitance (F) ⁽¹⁾	375
Voltage (V)	65
Power (10s) (kW) ⁽²⁾	60
Power (10s) (kW) ⁽²⁾ Energy (Wh) ⁽³⁾	220
Series resistance ESR (mΩ)	2.6
Time constant (s)	1
Mechanical characteristics	
Length (mm)	630
Width (mm)	403
Height (mm)	205
Volume (without terminals) (I : liter)	52
Weight (kg)	50
Operating conditions	
Operating temperature	-35℃ to +65℃
Storage temperature ⁽⁴⁾	-35℃ to +70℃

(1): Constant current discharge, 25℃
(2): Ragone plot power, V_{cutoff} 32.5V, 25℃
(3): Total energy stored, V_{cutoff} 0 V, 25℃
(4): At V = 0V

DT5 RESSOURCES ARCHITECTURE NAVALE

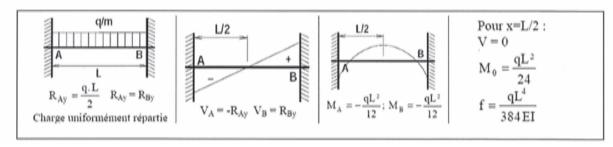
Le navire est construit sur une base catamaran c'est à dire à partir de deux flotteurs reliés ensemble par un ensemble de 16 "barrots" (ou traverses) sur lesquels est soudé le platelage qui supporte tous les équipements de la superstructure (cabine passagers, cabine de pilotage).

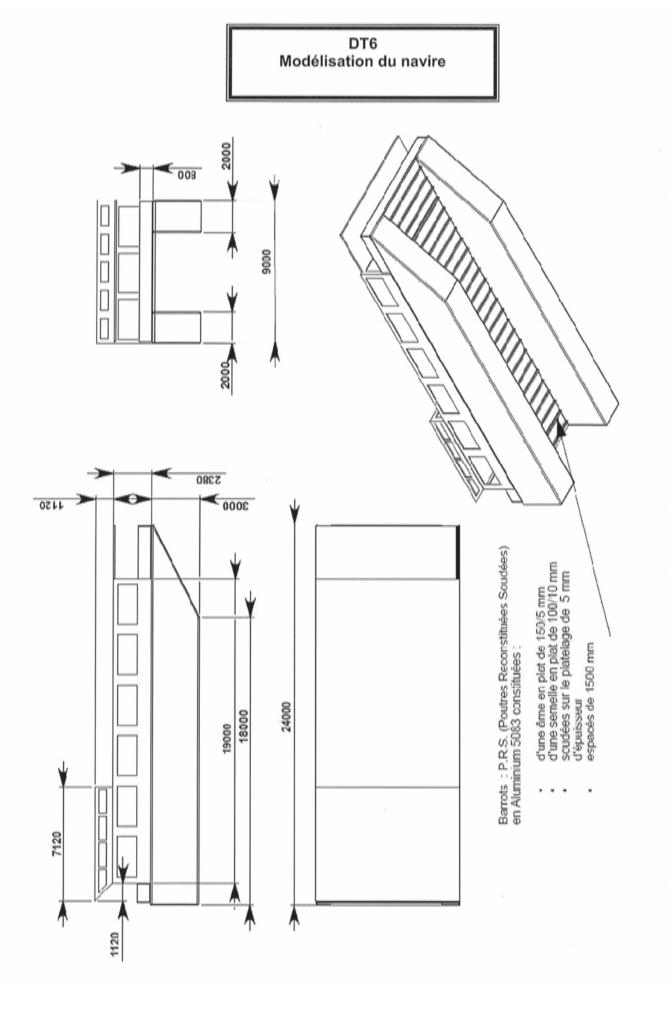
D'autres raidisseurs en tôles sont également soudés sous le platelage mais leur rôle se limite à diminuer les risques de voilement du platelage et de renforcer localement pour accueillir des équipements lourds. Ces raidisseurs ne seront pas pris en compte dans notre étude.

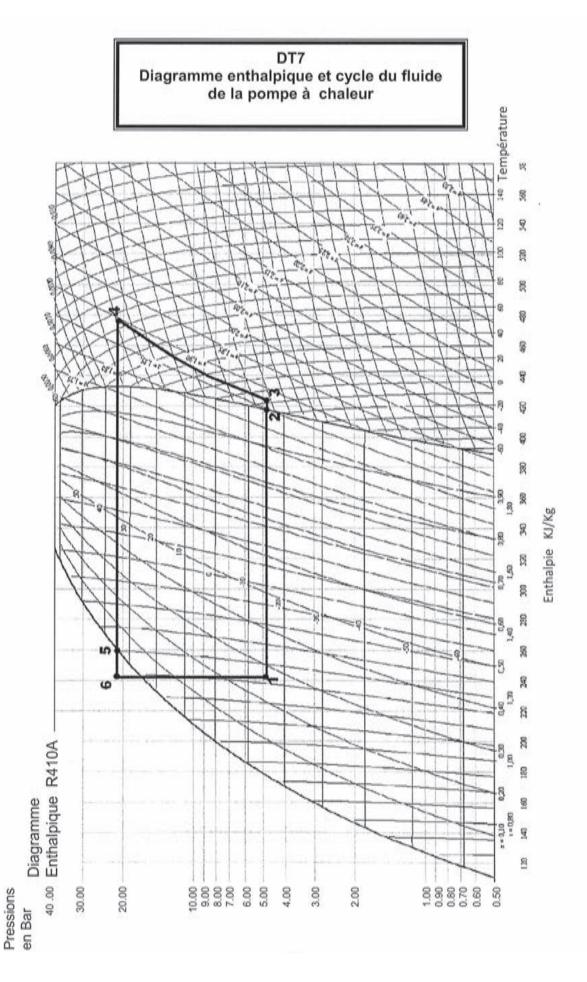
L'ensemble est assemblé à partir de tôles d'aluminium découpées, formées puis soudées entre elles

Les cloisons des superstructures sont également construites en tôles d'aluminium de 5 mm, renforcées par des raidisseurs de 6mm d'épaisseur et les toitures (tôles + profilés) en aluminium extrudé (marque Sapa). Elles sont complétées par une isolation incendie par laine de verre Isover Ultimate Wired mat 66 d'épaisseur 40 mm (0,031 W/m.K à 10℃).

Les surfaces vitrées en verre de sécurité trempé (TSG) norme ISO614-21005 ep. 10 mm montés avec pince glace.

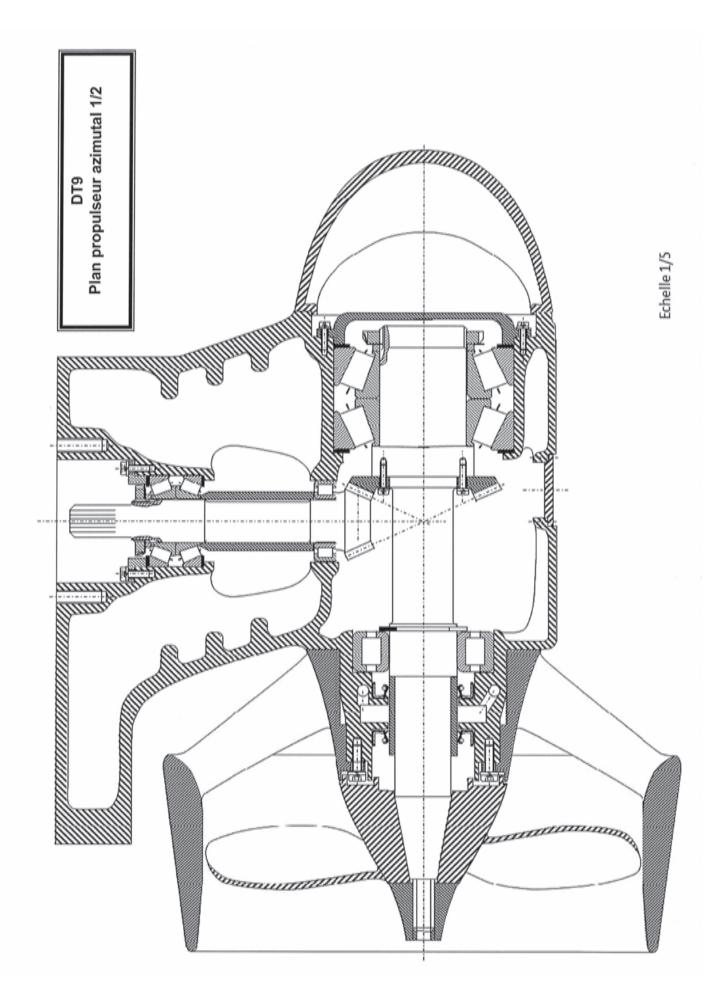

Le confort thermique de la cabine et du poste de pilotage est assuré par une pompe à chaleur Mitsubishi type PQHY-P300YHM-A alimentée comme les autres installations par les panneaux solaires et les batteries du navire. La puissance absorbée du compresseur dans les conditions les plus défavorables est de 37.5 kW.


- Masse du navire est estimée à 80 tonnes réparties en 5 tonnes pour chaque coque et 70 tonnes pour la superstructure
- La capacité du navire est de 150 passagers avec leurs bagages (colis, valises, bicyclettes...). La masse moyenne de chaque passager avec sa charge est évaluée à 100 Kg.
- Aucune pondération ne sera appliquée aux charges.
- Loi d'Archimède F = V.p.g avec V volume du solide immergé
- Caractéristiques de l'alliage d'aluminium 5083 utilisé pour la structure ;

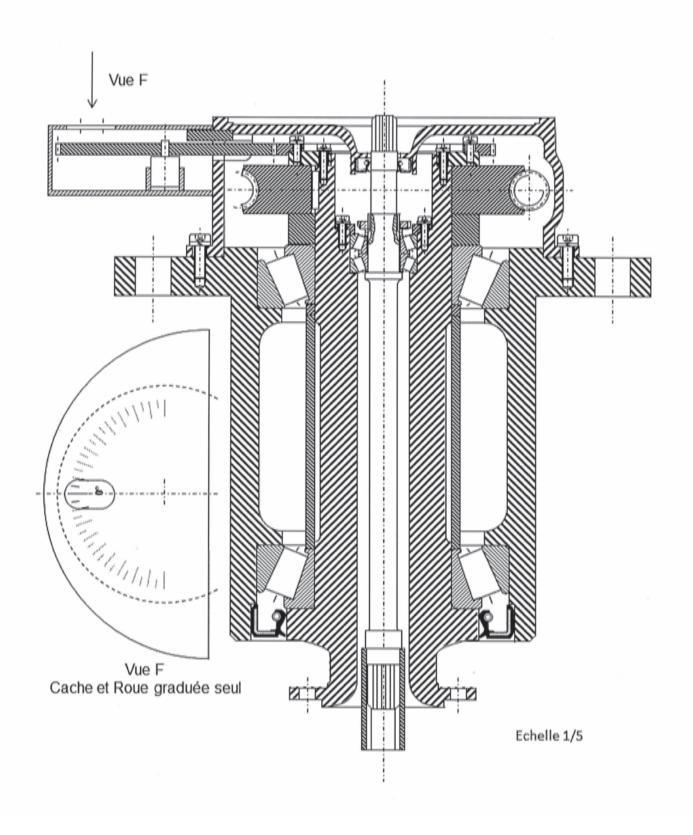

 $\begin{array}{lll} \bullet & \text{Masse volumique} & \rho = 2\,700\,\,\text{Kg.m}^{-3} \\ \bullet & \text{Module d'élasticit\'e} & E = 70\,000\,\,\text{MPa} \\ \bullet & \text{Contrainte élastique} & \sigma_e = 190\,\,\text{MPa} \\ \bullet & \text{Contrainte maximale à la rupture} & \sigma_r = 300\,\,\text{MPa} \\ \end{array}$

Autres données :

- 1 bar = 1 daN.cm⁻²
- Masse volumique de l'eau de mer ρ = 1025 Kg.m⁻³
- Accélération due à la pesanteur : g = 9,81 m.s⁻²
- Formulaire :


DT8

Extrait du CCTP « Fourniture d'un navire à passagers « zéro émission » ou « émission minimale » pour le réseau de transports collectifs urbains » émis par la communauté d'agglomération du pays de Lorient.


ANNEXE Nº AU OCTP

LIGNES	DISTANCE ALLER DISTANCE JOURNALIERE	TEMPS DE TRAVERSEE	TEMPS EMBARQUEMENT DEBARQUEMENT	VITESSE ACTUELLE	CAPACITE	NB ROTATIONS QUOTIDIENNES	AMPUTUDE HORAIRE DU SERVICE
usemaine Ligne 10 Pen Maré (Locmiquélic) Quai des Indes (Locient)	0.85miles 47,6	Zmp	4mn fonction du remp.	10 MŒUDS		8	6-33 295-26
semaine Ligne 11 la Pointe (Port-Louis) port de Péche (Lorient)	1.3 miles 72.8	ttmu	san sonction du remp.	10 MŒUDS		12	5x45 20h12
temane Ligne 12 Se catheine (Locmiquelique) Port do Péche (Lorieni)	0.6 miles 28,8	gun	4mn fonction du remp.	10 MEUDS		8	5120 8150 18130 19128
semaine Ligne 13 Embarcadate (Săvres) Locmaio (Port-Louis)	0.4 miles 21.6	4mm	4mn fonction du remp.	10 MŒUDS		tz	6:427 15459
dimenthes at jours fliride Ligne 14 in Points (Port-Louis) Pen Mank (Locniquélic) Cost des indes (Locient)	2.5 miles 45	27mh	4mn fonction du remp.	19 WELDS		a	9200 1200 1200 1200 1200 1200 1200 1200
complément estival Ligne 15 Cuai des Indes (Lorient) Cità de la Volle (Lorient) Kernèvel (Larmor-Plage) la Pointe (Port-Louis)	3.3 miles 30	44mn	4mn fonction du remp.	10 NŒUDS		4 1/2	1245

Rappel 1 mille = 1832 m, sutonomile nécessaire > 135 Km pour la ligne 11; > 90 Km pour la ligne 10

DT10 Plan propulseur azimutal 2/2

DT11 Calcul de durée de vie des roulements

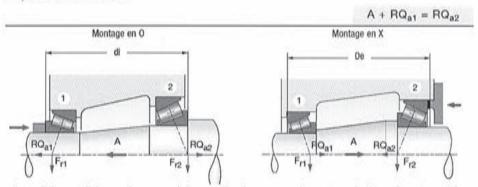
Charge dynamique équivalente P

 $P = X \cdot F_r + Y \cdot F_a$ $X \cdot et Y = facteurs de charge définis dans le tableau ci-dessous <math>F_a \cdot et F_r = efforts$ axial et radial appliqués au roulement

Туре	Coupe	Série	Angle	Fa/Co	e	F _a /	F _r ≤ e	F _a /	F _r > e
	Warderbea, about	Statement .	contact			X	Y	X	Y
Roulements à rouleaux coniques		302-303-313 320-322-322B 323-323B 330-331-332			voir liste des Roulements	1	0	0,40	voir liste des Roulements

Calcul d'un arbre monté sur 2 roulements

à contact angulaire


→ Equilibre radial de l'arbre

■ Calcul des efforts radiaux F_{r1} et F_{r2} appliqués aux points d'applications des charges des roulements par équilibre radial statique de l'arbre.

→ Equilibre axial de l'arbre

■ Les chemins de roulements à contact angulaire étant inclinés, les charges radiales F_{r1} et F_{r2} produisent une force de réaction axiale dite force axiale induite.

Si le roulement 1 est celui dont la force axiale induite a le sens de la force axiale extérieure A, l'équilibre de l'arbre est :

Avec RQ_{a1} et RQ_{a2} : charges axiales appliquées aux roulements calculées dans les tableaux ci-dessous :

Das de charge :

$$A + (F_{r1} / 2 Y_1) > (F_{r2} / 2 Y_2)$$

le roulement 1 fonctionne avec du jeu

	Roulement 1	Roulement 2		
Charge axiale appliquée	$RO_{a1} = F_{r1} / 2 Y_1$	$RO_{a2} = A + (F_{r1} / 2 Y_1)$		
Charge axiale utilisée dans le calcul de la charge dynamique équivalente	F _{a1} = 0	$F_{a2} = RO_{a2}$		

Das de charge :

$$A + (F_{r1} / 2 Y_1) < (F_{r2} / 2 Y_2)$$

le roulement 2 fonctionne avec du jeu

	Roulement 1	Roulement 2	
Charge axiale appliquée	$RO_{a1} = (F_{r2} / 2 Y_2) - A$	$RQ_{a2} = F_{r2} / 2 Y_2$	
Charge axiale utilisée dans le calcul de la charge dynamique équivalente	$F_{a1} = RQ_{a1}$	$F_{02}=0$	