Poignée complète avec boutons et afficheur
Schématisation cinématique

0 : Moule
1 : Batterie d’éjection
2 : Ejecteur
3 : Bielle de noyau
4 : Noyau
5 : Pièce injectée

Document A2
Situation à définir

Noyau

Matière: 40 Cr Ni Mo 8-6-4 Masse: 0,785 kg
Réduction: 0,7

Plan fonctionnel partiel Document A3
Figure 1 - Modèle d'étude – Question 11

Figure 2 - Modèle de répartition de la composante normale des actions de contact– Question 12
Courbes de traitement thermiques du
40 Cr Ni Mo 8-6-4
(d’après documents ThyssenKupp)

Courbe de revenu

Courbe TRC (Dureté HRC)

Document A5
Cale montante

Matière: 40 Cr Ni Mo 8-6-4
Masse: 0,785 kg
Réduction: 0,7

Repérage des surfaces

Document A7

Tournez la page S.V.P.
Bloc empreinte intérieur

Repérage des surfaces
Cale montante: résultat à obtenir après la phase de "découpe" par électroérosion à fil
Documentation Electroérosion à fil

Terminologie:

Régime: ensemble des paramètres de réglage du générateur pour des conditions d'érosion, en vue d'obtenir un résultat particulier.

Découpe standard: Régime d'ébauche tous contours.

Finition: Régime de repassage asservi (la vitesse d'avance du fil le long du contour est asservie au fonctionnement du générateur) pour corriger la géométrie et améliorer l'état de surface.

Surfaçage: Régime de repassage à vitesse constante (non asservie) pour améliorer uniquement l'état de surface.

Prise matière: (PM) Epaisseur de matière enlevée radialement pour une opération de repassage.

OFFSET: Pour un régime donné, décalage entre le contour programmé et la trajectoire du fil calculée par le DCN (Directeur de Commande Numérique) à partir du registre D0 qui contient la valeur de l'OFFSET du régime exécuté ainsi que le contenu du paramètre CLE

SE: Surépaisseur: correspond à la somme des prise matières (PM) des diverses opération d'usinage qui suivront celle considérée.

Exemple: \(SE = PM1 + PM2 \)

CLE: Registre pris en compte lors du calcul de la trajectoire du fil dans lequel sera affiché (si nécessaire) le décalage additionnel correspondant à la surépaisseur souhaitée après l'opération considérée

CH: Caractéristique de l'état de surface obtenu en électroérosion, défini par la société CHARMILLES TECHNOLOGIE (grain Charmilles)

Dénomination des régimes: selon le résultat obtenu

<table>
<thead>
<tr>
<th>Régime</th>
<th>Description</th>
<th>CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2</td>
<td>Découpe standard</td>
<td>(CH 29)</td>
</tr>
<tr>
<td>E5</td>
<td>Surfaçage</td>
<td>(CH 27)</td>
</tr>
<tr>
<td>E7</td>
<td>Finition</td>
<td>(CH 25)</td>
</tr>
<tr>
<td>E8</td>
<td>Finition</td>
<td>(CH 23)</td>
</tr>
<tr>
<td>E9</td>
<td>Surfaçage</td>
<td>(CH 23)</td>
</tr>
<tr>
<td>E10</td>
<td>Surfaçage</td>
<td>(CH 21)</td>
</tr>
<tr>
<td>E11</td>
<td>Surfaçage</td>
<td>(CH 15)</td>
</tr>
</tbody>
</table>
En vue d'obtenir une qualité de surface particulière, caractérisée par sa géométrie et son état de surface, qu'il est possible d'obtenir en une seule opération ou par plusieurs opérations successives, il suffira d'exécuter une commande précisant le numéro du régime suivi de la hauteur de la surface à éroder. Exemple: REX E2 H75 (Régime E2 hauteur découpée 75 mm)

Enchaînement d'opérations d'électroérosion à fil en vue de l'obtention d'une qualité de surface finale

Exemple général
Usinage comprenant 1 découpe + 2 « repassages »
Table de technologie XS25A.TEC

<table>
<thead>
<tr>
<th>Découpe standard</th>
<th>CH29</th>
<th>Régime: E2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matière: ACIER</td>
<td>H</td>
<td>A</td>
</tr>
<tr>
<td>3210 CrW 12</td>
<td>mm</td>
<td>100,0</td>
</tr>
<tr>
<td>HRC 59-60</td>
<td>5</td>
<td>1,0</td>
</tr>
<tr>
<td>FiG: SW25X</td>
<td>55</td>
<td>1,0</td>
</tr>
<tr>
<td>Ø 0,25 mm</td>
<td>60</td>
<td>1,6</td>
</tr>
<tr>
<td>Rmax: 500-550 N/mm²</td>
<td>65</td>
<td>1,0</td>
</tr>
<tr>
<td>Ra: 1</td>
<td>70</td>
<td>1,0</td>
</tr>
<tr>
<td>CH 29</td>
<td>75</td>
<td>1,0</td>
</tr>
<tr>
<td>Ra 2,8</td>
<td>80</td>
<td>1,0</td>
</tr>
<tr>
<td>Prise matière</td>
<td>90</td>
<td>1,0</td>
</tr>
<tr>
<td>Rmax: 8 Ra</td>
<td>100</td>
<td>1,0</td>
</tr>
<tr>
<td>Standard</td>
<td>110</td>
<td>1,0</td>
</tr>
<tr>
<td>Minimum</td>
<td>125</td>
<td>1,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surfaçage</th>
<th>CH27</th>
<th>Régime: E5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matière: ACIER</td>
<td>H</td>
<td>A</td>
</tr>
<tr>
<td>3210 CrW 12</td>
<td>mm</td>
<td>100,0</td>
</tr>
<tr>
<td>HRC 59-60</td>
<td>5</td>
<td>0,2</td>
</tr>
<tr>
<td>FiG: SW25X</td>
<td>50</td>
<td>0,2</td>
</tr>
<tr>
<td>Ø 0,25 mm</td>
<td>55</td>
<td>0,2</td>
</tr>
<tr>
<td>Rmax: 500-550 N/mm²</td>
<td>60</td>
<td>0,2</td>
</tr>
<tr>
<td>Ra: 1</td>
<td>65</td>
<td>0,2</td>
</tr>
<tr>
<td>CH 27</td>
<td>70</td>
<td>0,2</td>
</tr>
<tr>
<td>Ra 2,2</td>
<td>75</td>
<td>0,2</td>
</tr>
<tr>
<td>Prise matière</td>
<td>80</td>
<td>0,2</td>
</tr>
<tr>
<td>(Radiale)</td>
<td>90</td>
<td>0,2</td>
</tr>
<tr>
<td>Maximum</td>
<td>100</td>
<td>0,2</td>
</tr>
<tr>
<td>Standard</td>
<td>110</td>
<td>0,2</td>
</tr>
<tr>
<td>Minimum</td>
<td>125</td>
<td>0,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Finition standard</th>
<th>CH25</th>
<th>Régime: E7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matière: ACIER</td>
<td>H</td>
<td>A</td>
</tr>
<tr>
<td>3210 CrW 12</td>
<td>mm</td>
<td>100,0</td>
</tr>
<tr>
<td>HRC 59-60</td>
<td>5</td>
<td>0,2</td>
</tr>
<tr>
<td>FiG: SW25X</td>
<td>50</td>
<td>0,2</td>
</tr>
<tr>
<td>Ø 0,25 mm</td>
<td>55</td>
<td>0,2</td>
</tr>
<tr>
<td>Rmax: 500-550 N/mm²</td>
<td>60</td>
<td>0,2</td>
</tr>
<tr>
<td>Ra: 1</td>
<td>65</td>
<td>0,2</td>
</tr>
<tr>
<td>CH 25</td>
<td>70</td>
<td>0,2</td>
</tr>
<tr>
<td>Ra 1,8</td>
<td>75</td>
<td>0,2</td>
</tr>
<tr>
<td>Prise matière</td>
<td>80</td>
<td>0,2</td>
</tr>
<tr>
<td>(Radiale)</td>
<td>90</td>
<td>0,2</td>
</tr>
<tr>
<td>Maximum</td>
<td>100</td>
<td>0,2</td>
</tr>
<tr>
<td>Standard</td>
<td>110</td>
<td>0,2</td>
</tr>
<tr>
<td>Minimum</td>
<td>125</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Document A9-4
Tournez la page S.V.P.
Finition

<table>
<thead>
<tr>
<th>Matière: ACIER</th>
<th>CH23</th>
<th>Régime: E8</th>
</tr>
</thead>
<tbody>
<tr>
<td>X210 CW 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRC 59-60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filt: SW25X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 0,25 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rmax: 500-550 N/mm²</td>
<td>5</td>
<td>0,4</td>
</tr>
<tr>
<td>% 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1at de surface</td>
<td>65</td>
<td>0,4</td>
</tr>
<tr>
<td>Rmax = 8 Ra</td>
<td>70</td>
<td>0,4</td>
</tr>
<tr>
<td>CH 23</td>
<td>75</td>
<td>0,4</td>
</tr>
<tr>
<td>Ra 1,4 mm max 11,2</td>
<td>80</td>
<td>0,4</td>
</tr>
<tr>
<td>Prise matière (Radiate)</td>
<td>85</td>
<td>0,4</td>
</tr>
<tr>
<td>Maximum = 0,220 mm</td>
<td>90</td>
<td>0,4</td>
</tr>
<tr>
<td>Standard = 0,015 mm</td>
<td>110</td>
<td>0,4</td>
</tr>
<tr>
<td>Minimum = 0,013 mm</td>
<td>125</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Surfaçage

<table>
<thead>
<tr>
<th>Matière: ACIER</th>
<th>CH23</th>
<th>Régime: E9</th>
</tr>
</thead>
<tbody>
<tr>
<td>X210 CW 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRC 59-60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filt: SW25X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 0,25 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rmax: 500-550 N/mm²</td>
<td>55</td>
<td>0,4</td>
</tr>
<tr>
<td>% 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1at de surface</td>
<td>65</td>
<td>0,4</td>
</tr>
<tr>
<td>Rmax = 8 Ra</td>
<td>70</td>
<td>0,4</td>
</tr>
<tr>
<td>CH 23</td>
<td>75</td>
<td>0,4</td>
</tr>
<tr>
<td>Ra 1,4 mm max 11,2</td>
<td>80</td>
<td>0,4</td>
</tr>
<tr>
<td>Prise matière (Radiate)</td>
<td>95</td>
<td>0,4</td>
</tr>
<tr>
<td>Maximum = 0,020 mm</td>
<td>100</td>
<td>0,4</td>
</tr>
<tr>
<td>Standard = 0,007 mm</td>
<td>120</td>
<td>0,4</td>
</tr>
<tr>
<td>Minimum = 0,006 mm</td>
<td>125</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Surfaçage

<table>
<thead>
<tr>
<th>Matière: ACIER</th>
<th>CH21</th>
<th>Régime: E10</th>
</tr>
</thead>
<tbody>
<tr>
<td>X210 CW 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRC 59-60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filt: SW25X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 0,25 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rmax: 500-550 N/mm²</td>
<td>55</td>
<td>0,4</td>
</tr>
<tr>
<td>% 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1at de surface</td>
<td>65</td>
<td>0,4</td>
</tr>
<tr>
<td>Rmax = 8 Ra</td>
<td>70</td>
<td>0,4</td>
</tr>
<tr>
<td>CH 21</td>
<td>75</td>
<td>0,4</td>
</tr>
<tr>
<td>Ra 1,12 mm max 8,96</td>
<td>80</td>
<td>0,4</td>
</tr>
<tr>
<td>Prise matière (Radiate)</td>
<td>85</td>
<td>0,4</td>
</tr>
<tr>
<td>Maximum = 0,004 mm</td>
<td>100</td>
<td>0,4</td>
</tr>
<tr>
<td>Standard = 0,004 mm</td>
<td>110</td>
<td>0,4</td>
</tr>
<tr>
<td>Minimum = 0,004 mm</td>
<td>125</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Surfaçage

<table>
<thead>
<tr>
<th>Matière: ACIER</th>
<th>CH15</th>
<th>Régime: E11</th>
</tr>
</thead>
<tbody>
<tr>
<td>X210 CW 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRC 59-60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filt: SW25X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 0,25 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rmax: 500-550 N/mm²</td>
<td>55</td>
<td>0,2</td>
</tr>
<tr>
<td>% 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1at de surface</td>
<td>65</td>
<td>0,2</td>
</tr>
<tr>
<td>Rmax = 8 Ra</td>
<td>70</td>
<td>0,2</td>
</tr>
<tr>
<td>CH 15</td>
<td>75</td>
<td>0,2</td>
</tr>
<tr>
<td>Ra 0,56 mm max 4,48</td>
<td>80</td>
<td>0,2</td>
</tr>
<tr>
<td>Prise matière (Radiate)</td>
<td>85</td>
<td>0,2</td>
</tr>
<tr>
<td>Maximum = 0,003 mm</td>
<td>100</td>
<td>0,2</td>
</tr>
<tr>
<td>Standard = 0,003 mm</td>
<td>110</td>
<td>0,2</td>
</tr>
<tr>
<td>Minimum = 0,003 mm</td>
<td>125</td>
<td>0,2</td>
</tr>
</tbody>
</table>
Tableau de correspondance : Etat de Surface CH – Ra – Rt

(D’après documentation Charmilles)

<table>
<thead>
<tr>
<th>CH</th>
<th>Ra(μm)</th>
<th>Rt(μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.10</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0.11</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>0.12</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>0.14</td>
<td>1.10</td>
</tr>
<tr>
<td>4</td>
<td>0.16</td>
<td>1.20</td>
</tr>
<tr>
<td>5</td>
<td>0.18</td>
<td>1.40</td>
</tr>
<tr>
<td>6</td>
<td>0.20</td>
<td>1.60</td>
</tr>
<tr>
<td>7</td>
<td>0.22</td>
<td>1.70</td>
</tr>
<tr>
<td>8</td>
<td>0.25</td>
<td>2.00</td>
</tr>
<tr>
<td>9</td>
<td>0.28</td>
<td>2.40</td>
</tr>
<tr>
<td>10</td>
<td>0.32</td>
<td>2.50</td>
</tr>
<tr>
<td>11</td>
<td>0.35</td>
<td>2.80</td>
</tr>
<tr>
<td>12</td>
<td>0.40</td>
<td>3.20</td>
</tr>
<tr>
<td>13</td>
<td>0.45</td>
<td>3.60</td>
</tr>
<tr>
<td>14</td>
<td>0.50</td>
<td>4.00</td>
</tr>
<tr>
<td>15</td>
<td>0.56</td>
<td>4.40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CH</th>
<th>Ra(μm)</th>
<th>Rt(μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0.63</td>
<td>5.40</td>
</tr>
<tr>
<td>17</td>
<td>0.70</td>
<td>5.60</td>
</tr>
<tr>
<td>18</td>
<td>0.80</td>
<td>6.40</td>
</tr>
<tr>
<td>19</td>
<td>0.90</td>
<td>7.20</td>
</tr>
<tr>
<td>20</td>
<td>1.00</td>
<td>8.00</td>
</tr>
<tr>
<td>21</td>
<td>1.12</td>
<td>8.80</td>
</tr>
<tr>
<td>22</td>
<td>1.26</td>
<td>11.20</td>
</tr>
<tr>
<td>23</td>
<td>1.40</td>
<td>12.00</td>
</tr>
<tr>
<td>24</td>
<td>1.60</td>
<td>12.80</td>
</tr>
<tr>
<td>25</td>
<td>1.80</td>
<td>14.40</td>
</tr>
<tr>
<td>26</td>
<td>2.00</td>
<td>16.00</td>
</tr>
<tr>
<td>27</td>
<td>2.20</td>
<td>17.60</td>
</tr>
<tr>
<td>28</td>
<td>2.50</td>
<td>20.00</td>
</tr>
<tr>
<td>29</td>
<td>2.80</td>
<td>22.40</td>
</tr>
<tr>
<td>30</td>
<td>3.20</td>
<td>25.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CH</th>
<th>Ra(μm)</th>
<th>Rt(μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>3.50</td>
<td>28.00</td>
</tr>
<tr>
<td>32</td>
<td>4.00</td>
<td>32.00</td>
</tr>
<tr>
<td>33</td>
<td>4.50</td>
<td>36.00</td>
</tr>
<tr>
<td>34</td>
<td>5.00</td>
<td>40.80</td>
</tr>
<tr>
<td>35</td>
<td>5.60</td>
<td>44.00</td>
</tr>
<tr>
<td>36</td>
<td>6.30</td>
<td>50.40</td>
</tr>
<tr>
<td>37</td>
<td>7.00</td>
<td>56.00</td>
</tr>
<tr>
<td>38</td>
<td>8.00</td>
<td>64.00</td>
</tr>
<tr>
<td>39</td>
<td>9.00</td>
<td>72.00</td>
</tr>
<tr>
<td>40</td>
<td>10.00</td>
<td>80.00</td>
</tr>
<tr>
<td>41</td>
<td>11.20</td>
<td>89.60</td>
</tr>
<tr>
<td>42</td>
<td>12.60</td>
<td>100.80</td>
</tr>
<tr>
<td>43</td>
<td>14.00</td>
<td>112.00</td>
</tr>
<tr>
<td>44</td>
<td>16.00</td>
<td>128.00</td>
</tr>
<tr>
<td>45</td>
<td>18.00</td>
<td>144.00</td>
</tr>
</tbody>
</table>
Exemple de situation de découpe par électroérosion à fil d'un poingon avec maintien par attache pour permettre l'encastrement des opérations de découpe, surraçage et finition.
Tournez la page S.V.P.

Course longitudinale 300 mm
Course verticale 350 mm
Course transversale 250 mm
Plateau B rotation continue
Palette 300 x 300 mm

Magasin 24 outils
Diamètre maxi outil 120 mm
Longueur maxi outil 250 mm
Masse maxi outil 7 kg

Cône de broche ISO 30
Puissance Moteur 5,5 kW
Fréquence rotation 100 à 6000 tr/min
Vitesse avance travail 0 à 10 m/min
Fréquence rotation plateau 20 tr/min
Vitesse avance rapide 20 m/min

Centre d’usinage 4 axes à axe de broche horizontal

Document A10
Tournez la page S.V.P.
Extraits du référentiel du B.T.S. Etude et Réalisation d'Outillage de mise en forme des matériaux

C2-3 Choisir et optimiser la fabrication, les méthodes et les moyens:

<table>
<thead>
<tr>
<th>TRAVAIL DEMANDE</th>
<th>CONDITIONS, RESSOURCES</th>
<th>INDICATEURS D'EVALUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦ Ordonnancer les différentes étapes du processus de réalisation</td>
<td>♦ Le projet de l'outillage,</td>
<td>♦ Les documents définissant l'outillage sont adaptés aux moyens de réalisation retenus,</td>
</tr>
<tr>
<td>♦ Choisir pour chacune des étapes les procédés et les moyens les plus adaptés,</td>
<td>♦ L'historique ou le compte-rendu de fabrications similaires,</td>
<td>♦ La description du processus de réalisation de l'outillage est ordonnée et cohérente,</td>
</tr>
<tr>
<td>♦ Définir la mise en position sur la machine d'usinage,</td>
<td>♦ Les moyens humains et matériels disponibles,</td>
<td>♦ Les procédés et les moyens retenus sont adaptés aux buts recherchés.</td>
</tr>
<tr>
<td>♦ Définir les moyens de manutention nécessaires,</td>
<td>♦ Les structures et l'organisation des ateliers de fabrication,</td>
<td></td>
</tr>
<tr>
<td>♦ Proposer éventuellement un programme d'investissement.</td>
<td>♦ La nomenclature des produits manufacturés à utiliser.</td>
<td></td>
</tr>
</tbody>
</table>

Les connaissances associées à la capacité considérée ont été volontairement filtrées afin de limiter le cadre du travail demandé.

S-7 ORGANISATION ET SUIVI DE PRODUCTION
Capacités concernées : C2-3; C2-4; C2-6; C2-7; C2-8; C3; C4; C5

CONNAISSANCES
(programme de formation)

7-1 : L'entreprise industrielle de réalisation d'outillages

7-2 : L'entreprise et la gestion de production

7-3 : La politique de production

7-4 : La gestion des ateliers de réalisation d'outillages

ETRE CAPABLE DE
(reférentiel du diplôme)

Donner une vue synthétique du secteur d'activité "outillage" et de son évolution.

Enumérer les interrelations au sein de l'entreprise de réalisation d'outillages et définir les niveaux de responsabilité.

Définir le principe des différentes méthodes et donner leurs limites.

Commenter l'adéquation des moyens aux méthodes

Définir, calculer, programmer les besoins pour les réalisations du secteur

Elaborer les documents qui permettent d'organiser la réalisation rationnelle de l'outillage.

Participer à la définition des indicateurs de réalisation, à leur suivi, à l'amélioration des temps non productifs.

Document A11-1
S-9 TECHNOLOGIE DE FABRICATION

capacités concernées : C1-2; C1-3; C1-4; C2; C3-1; C3-2; C3-3; C3-4; C4; C5-1; C5-2; C5-3; C5-4; C5-7.

CONNAISSANCES (programme de formation)

9-1 : Techniques et procédés de réalisation

9-1-1 : Par enlèvement de matières:
* par outils tranchants,
* par éclatérosion,
* par abrasion.
Principe et limites d'utilisation:
Génération des surfaces:
* par outil de forme,
* par enveloppe,
* par définition mathématique.
Choix et définition des outils,
Choix et réglage des paramètres d'usinage, compte tenu du matériau à usiner,
Chronologie des opérations d'usinage,
Efforts de coupe, contraintes résiduelles,
Puissance absorbée,
Banques de données.

9-1-2 : Par déformation:
* par rétrécissement, par étalement, par matricage
* par impression et frappe à froid
Principe et limites d'utilisation,
Définition des outils,
Définition et chronologie des phases, nécessaires à la réalisation de la pièce,
Efforts mis en œuvre et contraintes résiduelles.

9-1-3 : Par dépôt électrolytique:
Principe et limites d'utilisation,
Définition des outils,
Définition et chronologie des phases, nécessaires à la réalisation de la pièce.

9-1-4 : Par moulage d'alliages métalliques:
Principe et limites d'utilisation,
Définition et chronologie des phases, conduisant à la réalisation de la forme en métal
 - recherche de la ligne de joint,
 - problèmes liés au retrait,
 - positionnement relatif des éléments,
 - reprise d'usinage,...

9-1-5 : Par moulage de matériaux non métalliques:
Principe de la prise de forme sur modèle,
Principe et justification de l'habillage d'un reproducteur
Structure, architecture, agencement des ouïlages intermédiaires, aux différentes étapes, et des ouïlages terminaux
Les différents matériaux de prise de forme:
 * leur élaboration
 * leur mise en œuvre
 - les résines de coulée, les charges, les renforts, les adjuvants, ...
Les paramètres à prendre en compte:
 - recherche du plan de joint,
 - dépouilles et retraits successifs,
 - formes moulantes extérieures,
 - formes moulantes intérieures,
 - les repères, les accessoires de repères, les dispositifs d'injection, l'étanchéité, le dégazage...

9-1-6 : Par découpe: (laser, jet d'eau, ...)
 Principe et applications.

9-1-7 : Par fritage:
 Principe et applications.

9-2 : Techniques de montage et de finition:

9-2-1 : Parachèvement des surfaces:
* ajustement et portage des surfaces complémentaires,
* ébavurage,
* rodage,
* polissage,
* chromage,
* gravage,
* vernissage.
Principe et limite d'utilisation de chacun des procédés.

ETRE CAPABLE DE (référentiel du diplôme)

Remarque : dans tous les cas il sera fait appel à l'assistance de banque de données

Pour un travail donné:
 - choisir le procédé,
 - décrire le procédé.
A partir d'un dessin définissant la forme et la qualité d'une surface:
 - choisir et justifier les moyens nécessaires à la réalisation,
 - énumérer, hiérarchiser les causes possibles de perturbation de la qualité des surfaces générées.
 - définir et choisir les outils
 - définir les paramètres d'usinage,
 - déterminer les temps d'usinage,
 - déterminer les efforts de coupe,
 - déterminer la puissance absorbée.

Pour un travail donné:
 - décrit le procédé
 - définir l'outil,
 - calculer les efforts mis en œuvre,
 - définir la suite des phases conduisant à la réalisation des éléments d'outillage.

Pour un travail donné:
 - décrit le procédé
 - définir l'outil,
 - indiquer la suite des phases conduisant à la réalisation de l'élément d'outillage
 - Le moule étant défini:
 - décrire le procédé de moulage de l'alliage métallique,
 - indiquer la suite des phases conduisant à la réalisation de la forme en alliage métallique.

Pour un outillage ou un élément d'outillage à réaliser en matériaux non métalliques:
 - élabore une procédure de réalisation
 - indiquer les matériaux à utiliser ainsi que leurs conditions de mise en œuvre.

 - Décrire un procédé de découpe et indiquer ses possibilités.
 - Décrire un procédé de fritage et indiquer ses possibilités.

A partir d'une gamme de réalisation:
 - situer la ou les phases de parachèvement.

Document A11-2

Tournez la page S.V.P.
9-2-2 : Assemblage, montage:
Ordonnanceront des étapes de montages,
Contrôle du fonctionnement:
 # ajustement, mise au point, retouches,
Moyens employés (vis, goupilles, colonnes, adhésifs, ...)
Montage des appareillages complémentaires (vérins, éléments chauffants, capteurs,
circuits électriques, circuits de régulation, ...),
Protection des surfaces (vernis, lubrifiants, ...).
9-2-3 : Techniques de retouche:
 # pièces rapportées,
 # soudure,
 # microsoudure,
Applications, limites des procédés, contraintes résiduelles.

9-3 : Les machines-outils:
 9-3-1 : Critères technologiques:
Capacité (course, puissance, ...),
Classe de précision,
Système de lecture (contrôle des déplacements),
Accessibilité (montage des outils, des pièces).
 9-3-2 : Critères cinématiques:
Nombre d'axes,
Typologie des interpolations,
Normalisation des axes.
 9-3-3 : Caractéristiques de communication:
Les données de programmation:
 # dessins définis manuellement,
 # dessins défis avec assistance informatique,
 # un modèle (pelage de surface).
Les langages de programmation,
Les lieux de programmation: sur site, hors site
Les moyens de programmation: manuels, assisté, traitement FAO
Les supports des fichiers d'usinage,
Le transfert des fichiers d'usinage.
 9-3-4 : Porte-pièces et porte-outils:
Les réglages en position,
Les règles d'isostatisme,
Les perturbations liés aux efforts de coupe et d'ablocage.

9-4 : Traitements thermiques et thermochimiques:
Mise en application du cours de physique à la réalisation des outillages

9-5 : Contrôles:
Cf. : s10-4

Pour un assemblage à réaliser:
 - déterminer les jeux,
 - choisir les moyens,
 - choisir l'ajustement
À partir du dessin d'ensemble d'un outillage:
 - établir la gamme de montage,
À partir d'une documentation:
 - relever les consignes d'utilisation, de montage des
 appareillages complémentaires.

À partir de micrographie, distinguer les différentes
structures.

Pour un travail donné, sélectionner le type de
machine.

À l'aide du manuel de programmation ou d'une
assistance informatisée:
 - établir le programme d'usinage,
 # pour un contour bidimensionnel,
 # pour un contour bidimensionnel évolutif,
 # pour une surface,
 # pour des cycles répétitifs.
À partir d'un dessin définissant la position d'une
surface à usiner:
 - choisir les surfaces d'appui,
 - choisir les surfaces de réglage,
 - définir les actions de coupe,
 - définir les actions d'ablocage.
S-10 QUALITE

capacités concernées : C1-2; C1-4; C2-1; C2-2; C2-3; C2-7; C2-8; C3-1; C3-3; C3-4; C3-5; C3-7; C4-1; C4-3; C4-4; C5-1; C5-2; C5-4; C5-5; C5-7.

CONNAISSANCES (programme de formation)

10-1 : La maîtrise de la valeur:
10-1-1 : Le rapport Qualité / Prix;

10-1-2 : L’analyse de la valeur:

10-2 : La démarche qualité:
10-2-1 : Définition de la qualité (ISO 9002)
10-2-2 : Les coûts de la non-qualité (ISO 9003)
10-2-3 : La gestion de la qualité (ISO 9001 à 9003)

10-3 : La normalisation:

10-4 : Mesurages et contrôles:
Contrôle de réception des éléments standards et des matières d’œuvre
- référence,
- quantité,
- aptitude à l’emploi,
- caractérisation.
Contrôles de conformité des outillages:
- procédures de contrôle des éléments de l’outillage:
 - contrôle en cours de fabrication,
 - contrôle au montage,
 - procédures de contrôle avant livraison au client,
 - procédures de contrôle à la mise en production de l’outillage.
Méthodes de mesure et de contrôle
- références spécifiées, références simulées,
- contrôles:
 * géométriques,
 * dimensionnels,
 * d’état de surface et d’aspect.
- contrôle des positions relatives.
Procédés
- machines à mesurer tridimensionnelle,
- projecteur de profil,
- colonnes de mesure,
- rugosimètre,
- essais mécaniques, métallurgiques,
- essais physiques et chimiques.

ETRE CAPABLE DE (rédactifuel du diplôme)

A partir d’un dossier technico-économique
- Identifier les éléments participant à l’amélioration du rapport qualité/cout.
- Analyser les différents types de coûts.

Participer à une démarche d’analyse de la valeur
Utiliser les moyens et les outils dans le cadre d’une action "analyse de la valeur"
A partir d’un dossier technico-économique ou d’un outillage:
Identifier les coûts de la non qualité
Identifier les éléments intervenants dans l’obtention de la qualité
Participer à une démarche de construction de la qualité.
Participer au suivi et à la gestion de la qualité.
 - Recenser les indicateurs de production,
 - Procéder à l’analyse des informations en utilisant les outils de la qualité,
 - Exploiter les résultats des statistiques,
 - Définir, si nécessaire, des procédures d’ajustement.

Expliquer l’importance de la standardisation
A partir de documentations, Identifier les différents types de normes
Indiquer les procédures de certification.
Identifier les différents organismes de normalisation et de certification

Proposer une procédure et les moyens adaptés.

Établir une méthode de contrôle de conformité.
Dans le cadre d’un contrôle de conformité
Proposer une procédure et les moyens adaptés.
- Décrire et justifier la méthode retenue.

- Établir un rapport de contrôle
Choisir en encadrant la solution retenue entre: Direction 1 ou Direction 2

Tracer en bleu sur les vues concernées la ligne de joint qui découle de la direction de démoulage choisie

Document réponse R1
Statique graphique

Question 9.

Direction générale de la bielle pendant l'injection

Direction générale de la bielle pour une position quelconque lors de l'ouverture

Axe de la pivot de pied de bielle

Question 10.

Document réponse R2
Document réponse R5
<table>
<thead>
<tr>
<th>MINISTÈRE DE L'ÉDUCATION NATIONALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Académie :</td>
</tr>
<tr>
<td>Session :</td>
</tr>
<tr>
<td>Concours :</td>
</tr>
<tr>
<td>Spécialité/option :</td>
</tr>
<tr>
<td>Repère de l’épreuve :</td>
</tr>
<tr>
<td>Intitulé de l’épreuve :</td>
</tr>
<tr>
<td>NOM :</td>
</tr>
<tr>
<td>Prénoms :</td>
</tr>
<tr>
<td>N° du candidat</td>
</tr>
</tbody>
</table>

Représentation de la situation de la pièce pour le fraisage

Document réponse R6