054	E a di a a l'afa da a a dale.		Niveaux			
\$5.1	Fonctionnalités des produits	1	2	3	4	
S5.1.1	Analyse fonctionnelle					
	Analyse fonctionnelle externe: - cycle de vie du produit; - expression fonctionnelle du besoin; - frontière de l'étude; - diagramme des interacteurs; - fonctions de service, contraintes; - cahier des charges fonctionnel, caractérisation des fonctions à satisfaire (critères, niveaux et flexibilité).					
	 Analyse fonctionnelle interne : fonctions techniques résultant des fonctions de service : outil FAST et autres outils : diagramme d'activité, synoptique, schéma bloc ; nature des éléments transformés par le produit : matière, énergie, information ; architecture fonctionnelle des produits et systèmes : chaîne d'énergie et chaîne d'information. 					
S5.1.2	Fonctionnalités des liaisons					
	Pour les solutions constructives suivantes : - assemblage démontable ; - assemblage permanent par soudage, frettage, collage ; - guidage en rotation par glissement et par éléments roulants ; - guidage en translation par glissement et par éléments roulants.					
	Nature de la liaison.					
	 Conditions fonctionnelles (jeux, serrages, ajustements normalisés) et surfaces associées à la mise en position. 					
	 Conditions fonctionnelles et éléments constitutifs du maintien en position. 					
	Lubrification éventuelle.					
	Étanchéité éventuelle.					
	 Données techniques et économiques : précision, tenue aux efforts, rigidité, standardisation éventuelle, prix du composant, coût d'installation, de maintenance). 					
S5.1.3	Caractérisation des pièces d'un point de vue matériau/procédé					
	 Les contraintes de structure : résistance aux efforts, rigidité, résistance aux chocs, à la fatigue ; masse, volume, température d'utilisation ; 					
	 Les contraintes d'interface : forme et précision des surfaces de liaison ; rugosité, résistance à l'usure, coefficient de frottement, capacité à transmettre les efforts des surfaces en contact ; résistance à la corrosion ; 					
	- esthétique éventuelle.					
	La hiérarchisation des contraintes.				١	

S5.1.4 Spécifications dimensionnelles et géométriques des pièces

- Défauts géométriques des pièces.
- Conditions fonctionnelles des assemblages et guidages.
- Spécification géométrique du produit :
 - normes ISO;
 - spécifications dimensionnelles, de forme, de position relative, d'orientation, de battement;
 - éléments de référence, référence spécifiée, zone de tolérance ;
 - exigence de l'enveloppe ;
 - exigence du maximum de matière (et de la tolérance zéro au maximum de matière), tolérance projetée;
 - exigence du minimum de matière ;
 - relations avec la maquette et les spécifications d'industrialisation.

S5.2.1 Cahier des charges d'un outillage

- · Besoin à satisfaire :
 - tout ou partie de pièce à fabriquer ou ensemble de pièces à assembler ;
 - procédé concerné ;
 - coût prévisionnel, taille des lots, délai prévu.
- · Fonction d'usage à satisfaire : interfacer le produit et le moyen.
- · Contraintes à respecter :
 - positionnement de la pièce dans l'espace de travail ;
 - maintien de la pièce ;
 - exigences liées à la pièce : formes, spécifications de fabrication et fonctionnelles, encombrement, processus prévisionnel et entités déjà réalisées, famille de pièces éventuelle...;
 - exigences imposées par le procédé : accessibilité, évacuation des effluents (calories, copeaux, huiles de coupe...), efforts à supporter, vitesses de coupe, d'avance, outillages existants...;
 - exigences du processus : temps alloués pour l'installation et la désinstallation de la pièce, de l'outillage sur l'équipement, changement de campagne, stockage, manutention...;
 - contraintes économiques : taille des lots, rythme de production attendu, budget alloué, délai d'étude, fournisseur éventuel imposé par contrat...;
 - contraintes de processus et de flux ;
 - contraintes de sécurité et d'environnement.

S5.2.2 Étude des solutions constructives d'outillages

- Mise en position (contrainte de répétabilité).
- · Multiposage.
- · Efficacité du maintien en position.
- · Action mécanique transmissible.
- · Structure et stabilité du bâti.
- Rapidité d'installation de la pièce.
- · Accessibilité de bridage et d'usinage ou de contrôle.
- · Flexibilité de la conception.
- · Rigidité.
- · Comportement vibratoire.
- · Standardisation des éléments constitutifs.
- · Bases de données techniques.
- Bases de données économiques.

Étude limitée aux solutions constructives d'outillages relatives aux principaux principes de mise en position (appui plan prépondérant, centrage long prépondérant...) et aux grandes familles de bridages (vis écrou, came, genouillère, actionneur hydraulique ou pneumatique).

<u>Nota</u>: Les analyses de quelques outillages actuels (spécifiques, modulaires et polyvalents) serviront de support à la structuration des savoirs en appui sur des bases de données techniques et économiques.

S5.2.3 Principe de conception d'un outillage

- Analyse du cahier des charges de l'outillage (inventaire des contraintes d'aptitude à l'emploi à assurer).
- Inventaire et extraction de solutions constructives analogues capitalisées.
- Définition du principe et de l'architecture générale de l'outillage.
- Conception numérique de tout ou partie de l'outillage incluant les fonctionnalités.
- · Choix des matériaux et des traitements éventuels.
- Spécification de l'outillage garantissant son aptitude et sa capabilité à la réalisation du produit.
- · Rédaction d'un protocole de réception de l'outillage.

Pour des outillages simples, éventuellement combinés avec des équipements de posage adaptés aux machines (étaux spéciaux, plaques, mandrins...).

S5.3.1 Les outils d'expression graphique

- · Croquis.
- Schéma de principe.
- Schéma architectural.
- Schéma cinématique.
- Schéma technologique.

S5.3.2 Les fonctionnalités des modeleurs 3D

- Paramétrage.
- Arbre de construction.
- · Contraintes d'assemblage.
- · Méthodes de conception :
 - dans l'assemblage,
 - par pièce,
 - par surfaces fonctionnelles.
- Bibliothèques et banques de données techniques.

S5.3.3 Exploitation des modèles 3D Mise en plan et habillage de la mise en plan pour la cotation. Édition de nomenclatures. Format des maquettes numériques des pièces d'un ensemble. Adaptation d'un modèle pour une exploitation FAO, pour la métrologie assistée par ordinateur, pour une simulation ou un prototypage donné.

S7.1	Élabaration des siù annu mattalli mora annui annumbra		Niveaux		
	Élaboration des pièces métalliques semi-ouvrées				4
	Principe physique associé au procédé.				
	Principe des outillages.				
	Limites et performances (matériaux, formes et précisions réalisables).				
	Incidences sur le matériau et sur les procédés de transformations ultérieurs.				
	Notion sur les coûts.				
	Pour les procédés suivants : - moulage en moules non permanents et permanents ; - déformation plastique : laminage, forgeage, estampage, matriçage, extrusion; - déformation plastique des tôles : pliage, emboutissage; - découpage, découpage fin, oxycoupage, découpage au jet d'eau haute pression, découpage au laser.				

\$7.6.3	Outillages	Niveaux			(
	Cette partie est étroitement liée au savoir S5.2. (Conception des outillages). • Typologie des porte-pièces : universels, dédiés, modulaires, panoplies.	1	2	3	4
	 Liaison entre porte-pièces et machine : standardisation, performances du point de vue de la transmission des efforts, de la répétabilité de la mise en position, vibratoire, de la facilité et la rapidité d'installation et de réglage. 				
	 Liaison entre pièce et porte-pièce : performances du point de vue de la mise en position et du maintien en position, de la facilité et de la rapidité d'installation, de la facilité de réglage. 				
	 Contraintes liés au procédé de coupe : accessibilité des outils et porte-outils, évacuation des copeaux, évacuation du lubrifiant. 				

S9.2.1 Relation métrologie et tolérancement normalisé Présentation de la matrice GPS. Vocabulaire associé aux éléments d'une pièce. Critères d'association d'un modèle géométrique idéal à un relevé de points. Principe de l'indépendance. Cas des exigences (enveloppe, maximum et minimum de matière, tolérance projetée). Tolérancement général ISO.

DP14 - Organisation pédagogique en STI

Étude des produits et des outillages: Cet enseignement comprend deux heures de cours, classe entière dispensé par le professeur de mécanique ou de génie mécanique construction et 4 heures de travaux pratiques d'atelier dont les enseignements sont partagés par deux professeurs, le professeur de mécanique ou de génie mécanique construction et un professeur de génie mécanique ou de génie mécanique productique. C'est pendant les deux heures de cours que seront effectuées les synthèses pour les enseignements de Mécanique industrielle et d'Étude des produits et des outillages.

Pour les travaux pratiques, un travail interdisciplinaire s'impose entre les deux professeurs. A

ce titre deux situations peuvent se présenter :

 Pour une division et donc deux groupes, les deux professeurs assurent leur enseignement simultanément, sur des supports d'étude (étude de cas par exemple) communs, dans une organisation pédagogique qu'il conviendra de définir.

- Pour une demi division, plusieurs solutions possibles :

- a) Intervention des deux professeurs successivement sur une période de deux heures pendant la séance de 4 heures attribuée aux étudiants,
- b) Intervention de chaque professeur une semaine sur deux et pendant 4 heures.

Quelque soit la solution retenue, le travail d'équipe est impératif.

Industrialisation : cet enseignement comporte 2 heures division entière (cours) et 4 heures de travaux pratiques d'atelier assurés par un (ou deux pour une division entière) professeur de génie mécanique ou de génie mécanique productique.

2 - L'exploitation des supports d'étude communs.

Pour former efficacement les étudiants aux démarches industrielles décrites plus haut, il convient, durant la formation, de favoriser l'exploitation de supports communs dans le cadre des activités :

- de travaux pratiques d'atelier pour les enseignements en « Étude des produits et des outillages », entre le professeur de construction et le professeur de fabrication ;
- de STI et d'Économie gestion, en deuxième année, pour les enseignements relatifs à la « Gestion technique et économique d'une affaire ».

6 - La construction des apprentissages à partir d'étude de cas.

Les apprentissages liés à l'étude des solutions techniques dans le cadre de « L'étude des produits et des outillages », à l'étude des procédés dans le cadre de l'industrialisation, à la gestion technique et économique d'une affaire, doivent s'appuyer impérativement en 1ère année, sur des études de cas industriels. A ce titre, la base de données « Outillages », diffusée il y a quelques années pour le BTS productique mécanique a toujours sa place dans le cadre de la préparation au BTS IPM.

7 - La conception des processus, coeur du métier du BTS IPM.

La conception des processus impose :

- l'identification des cinématiques machine et de leurs capacités de génération associées.
- l'identification des outils et des outillages nécessaires pour l'obtention d'une géométrie donnée.

Les apprentissages liés aux deux points ci-dessus se feront avantageusement à partir d'études de cas industriels (réels ou simulés, exploitation de logiciels de réalité virtuelle), exploitant des machines multi axes ou polymorphes.

- la maîtrise de la mise en oeuvre des outils informatiques d'aide à la décision (CFAO, Bases de données)

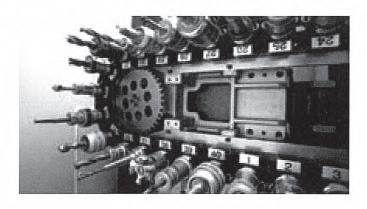
Si ces outils logiciels apportent une aide significative dans la conception des processus, il convient cependant de faire acquérir aux étudiants des réflexes leur permettant de vérifier les domaines d'application de ces outils, les hypothèses sur lesquelles ils s'appuient et la véracité des propositions qu'ils formulent.

DP14 – Organisation pédagogique en STI

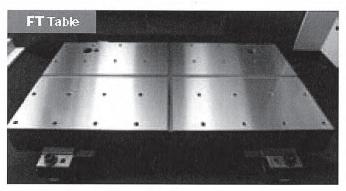
APPREN	TISSAGE	APPRO	FONDISSEMENT	STAGE EI MILIEU PRO
1 2 3 4 5 6 7 8 SEPT 1 OCT 1	9 10 11 12 13 14 NOV 1 DEC 1	15 16 17 18 19 JANV 1 FEV 1	20 21 22 23 24 25 MARS 1 AVRIL 1	26 27 28 29 30 31 32 33 MAI 1 JUIN 1
INTEGR	RATION	V	ALIDATION	EXAMEN
	P	rojet de qualific	ation de process	sus
1 2 3 4 5 6 7 8	9 10 11 12 13 14	15 16 17 18 19	20 21 22 23 24 25	26 27 28 29 30 31 32 33

NOTA : Il est impératif d'articuler les enseignements entre les 3 composantes cidessus

DP15 - Proposition d'organisation générale des enseignements STI


S'appuyant largement sur les réflexions ci-dessus, le document ci-après présente, comme exemple et non comme modèle, une organisation générale des enseignements de STI. Cette proposition, certes modeste, devrait donner aux équipes pédagogiques les bases d'une réflexion pour mettre en place leurs propres modalités d'organisation des enseignements.

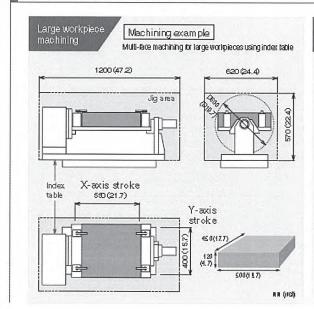
NOTA : Il est impératif d'articuler les enseignements entre les 3 composantes ci-dessus

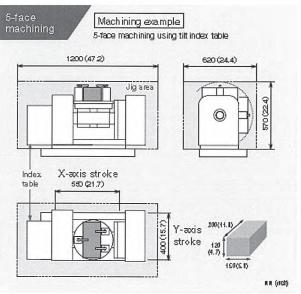

		Etude produits et des outillages	Industrialisation	Production
		Les 120 h de cours sont consacrées à l'enseignement de la mécanique. Travaux pratiques et travaux dirigés pour environ : 120h prof de GM const 120h prof de GM prod	120h de cours (Professeur de Génie Mécanique Productique) 240 h de travaux pratiques (Professeur de GM Prod – 1 groupe)	480 h de travaux pratiques (Professeur de Génie Mécanique Productique – 1 groupe))
De Sept. À fin Janvier	APPRENTISSAGE	En travaux pratiques et à partir de l'analyse et de l'étude de quelques produits industriels : Par le professeur de construction : 30h . Analyse fonctionnelle : S511 . Fonctionnalité des liaisons : S5.1.2 . Les outils d'expression .: S5.3.1 . Les fonctions des modeleurs : S532 Et simultanément Par le professeur de fabrication : 30 h . Procédés : S71 – S72 – S73	Cours 30h: . Matériaux rencontrés en production S74 . Types de fabrications S 1011 . Obtention des pièces usinage S76 . Machines d'usinage S764 . Sécurité S 1311 En travaux pratiques et à partir de l'analyse et de l'étude de processus relatifs à des produits industriels: 60h . Elaboration d'avant projets S82 . Données de fabrication S83 . Chaîne numérique S81	Travaux pratiques 80 h Cette première période doit permettre aux étudiants de maîtriser l'ensemble des machines et des équipements relatifs à la fabrication : - Lancement de fabrications à partir de dossiers de production existants ; - Contrôle des pièces et réglages. Des synthèses permettront de conforter les connaissances sur : . Obtention des pièces par usinage S76 . La conformité S92
De Février Au 15 mai	A P P R O F O N D I S S E M E N T	En travaux pratiques et à partir de l'analyse et de l'étude de quelques produits industriels : Par le professeur de construction : 30h . Les fonctions des modeleurs : \$532 . Les spécifications \$5.1.4 . Caractéristiques des pièces : \$5.1.3 . Conception des outillages \$521 \$522 Et simultanément Par le professeur de fabrication : 30 h . Procédés : \$72 . Outillages \$763 . Relation métrologie toléranc. \$921	Cours 30h: . Obtention des pièces usinage S76 . Traitement des pièces S75 . Environnement des machines S765 . Organisation suivi S1012 - S1023 . Organisation gestion qualité S 911 . Sécurité S131 En travaux pratiques et à partir de l'analyse et de l'étude de processus relatifs à des produits industriels: 60h . Elaboration d'avant projets S82 . Données de fabrication S83 . Chaîne numérique S81	Travaux pratiques 80 h A partir de travaux pratiques de manipulations, d'expérimentations, de validation, cette période doit permettre, à partir de fabrications de types industriels de : - Identifier les performances des machines; - Identifier le comportement des outils et outillages; - Identifier, définir et mettre en œuvre des protocoles de mesure et de contrôle. Des synthèses permettront de conforter les connaissances sur : S764 - S761 - S 762 - S763 - S92.
De Sept. À fin Janvier	I N T E G R A T I O N	Dans le cadre de minis projets : Par le professeur de construction : 30h . Principes de conception d'un outillage S523 . Les outils d'expression S5.3.1 . Exploitation de modèles 3D S533 Par le professeur de fabrication : 30h . Outillages S763 . Caractéristiques des pièces S5.1.3	Cours 30h: . Choix, maitrise contrôle S923 . Aspects technico économiques S84 . Gestion de l'unité de production S102 Dans le cadre de minis projets : 60h . Elaboration d'avant projets S82 . Données de fabrication S83 . Chaîne numérique S81	Travaux pratiques 80 h .Une première partie de cette période sera utilisée pour exploiter les acquis du stage industriel et préparer la soutenance en relation avec le professeur de français et d'anglais (20h). .Jusqu'à fin novembre, des travaux pratiques de production de pièces seront mis en œuvre, ils seront pris en compte pour l'évaluation de l'épreuve « Lancement d'une production ». Mise en œuvre du projet de qualification de processus (validé fin octobre).
De fin Février Au 15 mai	V A L I D A T I O N	Projets de préindustristrialisation. Ces projets confiés aux étudiants seront pilotés par les deux professeurs, ils permettront de conforter les connaissances sur les chapitres : . Procédés: S71 – S72 – S73 . Caractéristiques des pièces: S5.1.3 . Les spécifications S5.1.4	Cours 30h: . Gestion de l'unité de production S102 . Protection environnement S132 Projets d'industrialisation pris en compte pour l'évaluation de l'épreuve « Conception de processus »	Au cours de cette période et dans le cadre des activités pratiques les étudiants seront amenés à : - Suite du projet de « Qualification de processus » ; - Préparer leur projet de « Traitement d'une affaire » en relation avec le professeur d'économie gestion. Des synthèses permettront de conforter les connaissances sur : S83 – S92

DT1 - Définition des moyens associés CU + diviseur

Un magasin de 40 outils

Une table fixe à forte capacité de charge


Précision de positionnement : 0,005 mm


Courses en X-Y	Hauteur sur table
Axe X - 550 mm Axe Y - 400 mm	350 mm
Dimensions de la table	Capacité de charge maxi
Axe X - 800 mm Axe Y - 400 mm	600 kg

Accélérations	Temps	
Avance rapide	Outil à outil	
70 m/min	0,9 s	
Axes X : 1,2 g	copeau à	
Axe Y: 1,2 g	copeau	
Axe Z : 1,5 g	2,0 s	

La figure ci-dessous montre la possibilité d'ajouter un quatrième axe autour de l'axe X, ou deux axes autour des axes X et Z. Précision de positionnement ± 15" par axe.

Features specifications suitable for large workpiece machining or 5-face machining using a tilt index table. Easily incorporated in your automation line.

DT2 – Documentation logiciel MMT

Vous disposez d'une machine à mesurer tridimensionnelle à commande numérique programmable par apprentissage et d'un palpeur à déclenchement. Le logiciel associé à cette MMT possède les fonctionnalités suivantes :

Éléments géométriques mesurés

- Les surfaces (plan, sphère, cylindre, cône, surface complexe)
- Les lignes (rectilignes, circulaires)
- Les points

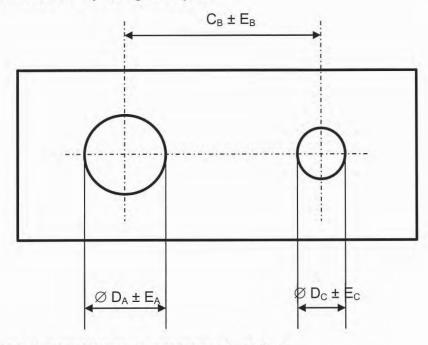
Remarque : le calcul des points mesurés, par compensation du rayon du palpeur, nécessite, pour les palpeurs à déclenchement, de connaître le type de surface portant l'entité mesurée.

Représentation des éléments géométriques

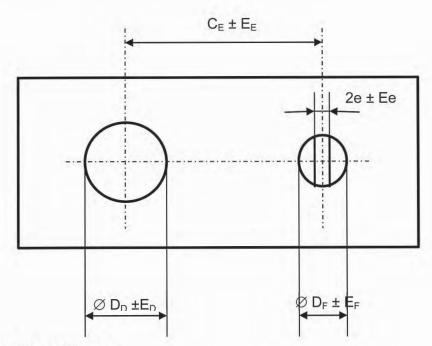
Éléments géométriques idéaux	Éléments géométriques de base	Taille
Point	Un point	
Droite	Une droite	
Plan	Un plan	
Cercle	Un plan (contenant le cercle) et un point (son centre)	Un rayon
Sphère	Un point (son centre)	Un rayon
Cylindre	Une droite (son axe)	Un rayon

Paramètre des éléments géométriques de base

	Paramètre de position	Paramètres d'orientation	Description
Point	X, Y, Z		Coordonnées du point
Droite	X, Y, Z	a, b, c	Coordonnées d'un point de la droite Composantes d'un vecteur unitaire de la droite
Plan	X, Y, Z	a, b, c	Coordonnées d'un point du plan Composantes d'un vecteur unitaire normal au plan


Outils de construction d'éléments géométriques

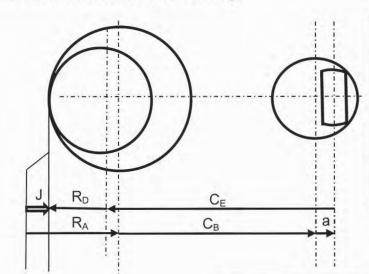
Construction d'un point	Milieu de deux points			
	Projection orthogonale d'un point sur une droite			
	Projection orthogonale d'un point sur un plan			
	Intersection de deux droites (coplanaires)			
Construction d'une droite	Passant par deux points			
	Perpendiculaire à une droite et passant par un point			
	Parallèle à une droite et passant par un point			
	Perpendiculaire à un plan et passant par un point			
	Projection orthogonale d'une droite sur un plan			
	Intersection de deux plans			
Construction d'un plan	Passant par un point et une droite			
	Perpendiculaire à une droite et passant par un point			
	Parallèle à un plan et passant par un point			
	Perpendiculaire à un plan et passant par une droite			
	Parallèle à une droite et passant par une droite			


Le critère d'association utilisé pour associer un élément géométrique à un nuage de points palpés est celui des moindres carrés.

DT3 - Calcul d'un centreur locating

1- Définition de la pièce générique

2 - Définition du montage avec centreur - locating

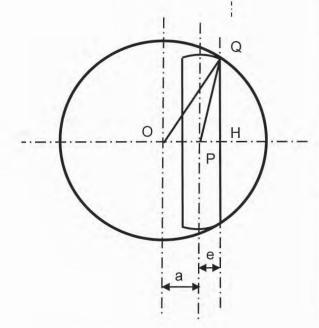


3 - Données du problème

Valeurs connues	Valeurs choisies	Valeurs calculées
Diamètre de l'alésage :	Diamètre du centreur :	Diamètre du locating :
$D_A = 8 H13 = 8_0^{+0.22}$	$D_D = 8 \text{ h} 10 = 8^0_{-0.058}$	D _F
Diamètre de l'alésage : $D_C = 8 \text{ H}13 = 8_0^{+0,22}$	Entraxe du centreur locating : $C_E = 195,33 \pm 0,01$	
Entraxe des alésages : C _B = 195,33 ± 0,05	Épaisseur du locating : 2⋅e = 4 ± 0,01	

DT3 - Calcul d'un centreur locating

4 - Calcul du diamètre maximum du locating



Pour J_{mini} = 0, calcul de a_{mini}

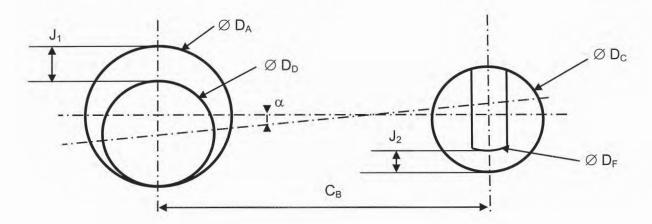
$$\begin{split} J_{mini} &= R_{Amini} + C_{Bmini} + a_{mini} - \\ C_{EMaxi} + R_{Dmaxi} \end{split}$$

 $a_{mini} = C_{EMaxi} + R_{Dmaxi} - R_{Amini} - C_{Bmini}$

 $a_{mini} = 195,34 + 4 - 4 - 195,28$ $a_{mini} = 0,06$

Le calcul du diamètre du locating est effectué au maximum de matière, c'est-à-dire pour PQ_{Maxi}, OQ_{mini}, a_{mini}

Dans le triangle QHP QH² = QP² - PH² = R_F^2 - e^2 Dans le triangle QHO QH² = OQ² - (a+e)² = R_C^2 - (a+e)² $R_{F mini}$ = 3,94


$$J_{1 \text{ Maxi}} = 0,139$$

$$J_{2\text{Maxi}} = 0,170$$

$$\tan(\alpha) = \frac{J_{1\text{Max}i+J_{2\text{Max}i}}}{2 \cdot B}$$

$$\alpha \approx 0,045^{\circ}$$

5 - Vérification de la capabilité du montage

