SESSION DE 2011

CA/PLP

CONCOURS EXTERNE ET CAFEP

Section : GENIE MECANIQUE

Option
Maintenance des véhicules, machines agricoles et engins de chantier

DOSSIER DE TRAVAIL

L’ensemble du dossier sera rendu en fin d’épreuve.
S’il le souhaite, le candidat est invité à ajouter des commentaires sur une feuille de copie en ayant soin d’indiquer le numéro de la question.

Ce dossier contient 26 pages
Sommaire

<table>
<thead>
<tr>
<th>Paragraphe</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Etude préalable du train-avant</td>
<td>4</td>
</tr>
<tr>
<td>2. Etude du système de direction</td>
<td>6</td>
</tr>
<tr>
<td>3. Etude du fonctionnement et de la modulation d'assistance</td>
<td>13</td>
</tr>
<tr>
<td>4. Etude du groupe électro-pompe piloté (moteur et pompe)</td>
<td>16</td>
</tr>
<tr>
<td>5. Etude de la valve</td>
<td>20</td>
</tr>
<tr>
<td>6. Etude d'un dysfonctionnement de l'assistance</td>
<td>21</td>
</tr>
<tr>
<td>7. Etude du comportement routier du véhicule</td>
<td>25</td>
</tr>
</tbody>
</table>
Temps conseillé et barème

Temps conseillé pour la lecture du Dossier Technique : 45 mn

<table>
<thead>
<tr>
<th>Partie</th>
<th>Paragraphe</th>
<th>Nombre de points attribués</th>
<th>Temps conseillé en minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Etude préalable du train-avant</td>
<td>10</td>
<td>15 mn</td>
</tr>
<tr>
<td>2</td>
<td>Etude du système de direction</td>
<td>60</td>
<td>75 mn</td>
</tr>
<tr>
<td>3</td>
<td>Etude du fonctionnement et de la modulation d’assistance</td>
<td>25</td>
<td>30 mn</td>
</tr>
<tr>
<td>4</td>
<td>Etude du groupe électro-pompe piloté (moteur et pompe)</td>
<td>35</td>
<td>45 mn</td>
</tr>
<tr>
<td>5</td>
<td>Etude de la valve</td>
<td>10</td>
<td>15 mn</td>
</tr>
<tr>
<td>6</td>
<td>Etude d’un dysfonctionnement de l’assistance</td>
<td>35</td>
<td>45 mn</td>
</tr>
<tr>
<td>7</td>
<td>Etude du comportement routier du véhicule</td>
<td>25</td>
<td>30 mn</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>200</td>
<td>4 h 15</td>
</tr>
</tbody>
</table>
1. **Etude préalable du train-avant**

On donne ci-après sur les figures 1 et 2, des schémas cinématiques en 2D du train avant pour une roue, étant précisé que ces schémas ne reflètent pas la réalité sur un plan purement géométrique.

- figure 1 : vue latérale du ½ train-avant -
- figure 2 : vue frontale du ½ train-avant -

Légende des constituants principaux :

- 1 : châssis
- 2 : bras supérieur
- 3 : bras inférieur
- 4 : porte-fusée
- 5 : fusée
- 6 : roue
- 7,8 : éléments de la suspension
1.1. Etude des liaisons
Indiquez la nature de la liaison équivalente aux 2 liaisons existant entre le porte-fusée 4 et la fusée 5 et préciser la nature du mouvement admissible entre ces 2 pièces.

REPONSES :

1.2. Angles caractéristiques
Définissez sur les schémas des figures 3 et 4, les angles de chasse θ_{CH}, de pivot θ_{P}, de carrossage θ_{CA} et l'angle inclin θ_{IN}, ainsi que les déport frontal δ_{F} et latéral δ_{L}. Vous trouverez les définitions de ces grandeurs dans le Dossier Technique.

- figure 3 : vue latérale du ½ train-avant -
- figure 4 : vue frontale du ½ train-avant -
2. **Etude du système de direction**

2.1. Relation entre les angles de volant et de braquage des roues

Le constructeur a souhaité obtenir des angles de rotation maximums au niveau des roues respectivement de $\theta_i = 39$° pour la roue intérieure et de $\theta_e = 33$° pour la roue extérieure au virage, ce pour un angle maximal au volant de $\theta_v = 1,4$ tour par rapport à la "position milieu". En déduire le rapport global moyen de démultiplication r_d (lequel intègre les aspects géométriques du système ainsi que la "flexibilité" des éléments).

REPONSE:

2.2. Épure de Jeanteau

La figure 5 illustre un schéma relatif à "l'épure de Jeanteau". Il sera considéré que le véhicule aborde un virage dans des conditions "cinématiquement idéales".

- figure 5 : Épure de Jeanteau -

Définitions associées :
- Les points A, B, C et D correspondent aux centres des roues,
- Le point I est le Centre de Rotation Instantané (CIR) du véhicule (mouvement par au sol),
- θ_i et θ_e sont respectivement les angles de rotation des roues interne et externe au virage,
- δ_i et δ_e sont respectivement les départs latéraux des roues interne et externe au virage,
- R est le rayon de courbure du virage,
- e est l'empattement du véhicule $e = 2,72$ m,
- v est la vitesse moyenne du véhicule $v = 1,54$ m.
2.2.1. Indiquer sommairement l'intérêt de cette épure.

2.2.2. Justifier comment on peut en déduire les relations suivantes :
\[\tan \theta_i = \frac{e}{(R - v/2)} \quad (1) \]
\[\tan \theta_e = \frac{e}{(R + v/2)} \quad (2) \]

2.2.3. Déterminer les angles théoriques que l'on obtiendrait, si le train avant respectait l'épure de Jeanteau, pour un rayon de courbure \(R = 5,6 \) m.

2.2.4. Calculer "l'angle de divergence" maximal réel : \(\Delta \theta = \theta_i - \theta_e \)
Conclure vis à vis des résultats précédents.

REPONSES :
2.3. Entrées / sorties du Groupe Electro-Pompe
A l'aide du Dossier Technique, recenser les informations d'entrée internes et externes ainsi que les commandes en sortie du calculateur 7122 du GEP.

REPRISE:

<table>
<thead>
<tr>
<th>Informations d'entrée :</th>
<th>Commandes en sortie :</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.4. Schématisation hydraulique

Compléter le schéma hydraulique du système d'assistance proposé sur la figure 6. On se référera au Dossier Technique en ce qui concerne la symbolisation. Le clapet de sécurité ne sera pas représenté, celui-ci faisant l'objet de la question suivante.

![Diagramme hydraulique](image)

Figure 6 : schéma hydraulique avec clapet limiteur
2.5. Mise en situation du clapet de sécurité
On rappelle que ce clapet intervient en cas de grippage du moteur du GEP.
Ce clapet s’ouvre avec un niveau de débit faible induit par le mouvement de la crémaillère et se ferme avec un niveau de débit important lors du fonctionnement normal de la pompe.

En vous aidant de la figure 5 du Dossier Technique et du dessin de la figure 7 ci-dessous, compléter le schéma hydraulique de la figure 8, pour une manœuvre sans assistance, en indiquant par des flèches, la circulation de l’huile dans le circuit pour un déplacement du vérin vers la gauche.

- figure 7 : fonctionnement du clapet de sécurité -

- figure 8 : schéma hydraulique avec le clapet de sécurité -

- Remarque : Le clapet limiteur est cette fois représenté de manière simplifiée.
2.6. Organes de puissance
En vous appuyant sur les figures 5 et 10 du Dossier Technique, compléter sur la figure 9 ci-dessous, le synoptique des 2 chaînes de transmission de puissance relatives au système de direction.

- figure 9 : chaînes de transmission de puissance -

2.7. On donne ci-après les définitions des puissances P_1 en “entrée” et “sortie” des différents composants.

Rappels :

- La puissance développée par une force F dont le point d’application se déplace à une vitesse V, s’exprime par la relation : $P_{\text{(Watt)}} = F_{\text{(Newton)}} \cdot V_{\text{(m/s)}}$

- La puissance développée par un moment M_t (ou un couple C) dont l’axe principal est animé d’une vitesse de rotation ω, s’exprime par la relation : $P_{\text{(W)}} = M_t_{\text{(N.m)}} \cdot \omega_{\text{(rad/s)}}$

- La puissance absorbée par un système électrique alimenté par une tension continue U et traversé par un courant I, s’exprime par la relation : $P_{\text{(W)}} = U_{\text{(V)}} \cdot I_{\text{(A)}}$

- La puissance communiquée à un fluide possédant un débit volume q avec une différence de pression Δp entre 2 sections amont et aval d’un tube de courant, s’exprime par la relation : $P_{\text{(W)}} = q_{\text{(m3/s)}} \cdot \Delta p_{\text{(Pascal/Pa)}}$
Expression des niveaux de puissance :
Pour simplifier l’analyse, on considère que le rendement de tous les éléments constitutifs de la chaîne purement mécanique (hors hydraulique) sont égaux à 1.

\[
P_{e1} = P_{12} = P_{13} = P_{14} = C_{\text{conducteur}} \cdot \omega_{\text{volant}}
\]
\[
P_{e2} = U_{\text{batterie}} \cdot I_{\text{moteur}}
\]
\[
P_{21} = C_{\text{moteur}} \cdot \omega_{\text{moteur}}
\]
\[
P_{22} = P_{23} = q_{\text{pompe}} \cdot \Delta p
\]
\[
P_{24} = F_{\text{vélin}} \cdot V_{\text{crémalière}}
\]

\[
P_{5} = F_{\text{crémalière}} \cdot V_{\text{crémalière}} = P_{s1} + P_{s2}
\]
\[
P_{s1} = M_{\text{roue gauche}} \cdot \omega_{\text{roue gauche}}
\]
\[
P_{s2} = M_{\text{roue droite}} \cdot \omega_{\text{roue droite}}
\]

Des mesures ont été réalisées sur le véhicule à l’arrêt, avec ou sans assistance, pour une vitesse de rotation du volant égale à 0,25 tour/s :

- Cas sans assistance : le couple relevé au volant vaut \(C_{\text{volant}} = 70 \text{ Nm} \),

- Cas avec assistance : la tension aux bornes du moteur électrique et l’intensité le traversant valent respectivement : \(U = 12 \text{ V} \) et \(I = 50 \text{ A} \),

- Le rendement global de la chaîne électro-hydraulique (du moteur électrique jusqu’au vérin ; les pertes les plus importantes se situant au niveau de la valve), est estimé à : \(\eta_{\text{global}} \text{ chaîne électro-hydraulique} = 17 \% \).

2.7.1. Déterminer la puissance nécessaire \(P_5 \) au niveau des roues.

2.7.2. Justifier la raison pour laquelle le même niveau de puissance \(P_5 \) est requis pour les 2 cas analysés.

2.7.3. Calculer la contribution du système d’assistance (\% de puissance nécessaire au niveau des roues pour effectuer la manœuvre).

2.7.4. En déduire le couple résiduel à fournir au niveau du volant.
3. **Etude du fonctionnement et de la modulation d'assistance**

3.1. **Indiquer l'intérêt d'alimenter le GEP tant que le contact est maintenu, le moteur thermique s'étant arrêté.**

REPONSE

3.2. **Boucles de régulation**
Completer sur la figure 10 de la page suivante, le schéma bloc des asservissements présents sur ce système de direction.

Les termes à placer seront les suivants : vérin, moteur, pignon, capteur de vitesse rotation de la pompe, pompe, valve distributrice.
Consigne
Coupel volant

Barre de torsion

Boucle de retour
Chaîne directe

Crémaillère

- figure 10, boucles de régulation -
3.3. Modulation du débit
Les lois de débit volume en fonction de la vitesse du volant : \(q_V \text{ GEP} = f(\omega_{\text{volant}}) \), pour différentes vitesses du véhicule \(V_{\text{véhicule}} \), sont fournies dans le Dossier Technique (figure 8). En déduire pour une vitesse véhicule de 90 Km/h, l’ajustement du débit relatif à une vitesse volant de 300°/s.

REponce:

3.4. Contrôle du capteur volant
Afin de contrôler le bon fonctionnement du capteur volant, un technicien après-vente relève à l’aide d’un oscilloscope, l’évolution des 2 signaux de tension \(S_1 \) et \(S_2 \) délivrés par le capteur de rotation du volant.
Représenter sur la figure 11, les signaux que la personne devrait observer sur l’écran de l’oscilloscope pour la valeur de vitesse du volant de 300°/s. On considère que la rotation volant s’effectue dans le sens horaire. Vous préciserez l’échelle du temps en calculant la fréquence et la période des signaux.

REponce:

S1

\[\text{temps} \]

S2

\[\text{temps} \]

- figure 11 : relevé des signaux délivrés par le capteur volant -
4. **Etude du groupe électro-pompe piloté (moteur et pompe)**

On donne ci-après les caractéristiques du groupe électro-pompe piloté GEP qui seront utilisées pour les calculs des questions suivantes.

<table>
<thead>
<tr>
<th>Cylindrée pompe C_y</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pression (relative) maximale</td>
<td>90 à 108 bar</td>
</tr>
<tr>
<td>Régime maximal de la pompe N_{pompe}</td>
<td>4900 tr/mn</td>
</tr>
<tr>
<td>Rendement volumétrique pompe $\eta_{vol \ pompe}$</td>
<td>0,94</td>
</tr>
<tr>
<td>Rendement mécanique pompe $\eta_{meca \ pompe}$</td>
<td>-</td>
</tr>
<tr>
<td>Puissance électrique maximale</td>
<td></td>
</tr>
<tr>
<td>"Normal Power" : version du véhicule étudié</td>
<td></td>
</tr>
<tr>
<td>("High Power" : autre version disponible)</td>
<td>600 W à 100 bar</td>
</tr>
<tr>
<td></td>
<td>(700 W à 110 bar)</td>
</tr>
<tr>
<td>Débit maximal q_v à 5 bars</td>
<td>8 l/mn</td>
</tr>
<tr>
<td>Température maximale de fonctionnement</td>
<td>122°C</td>
</tr>
<tr>
<td>Rendement du moteur sans balai η_{moteur}</td>
<td>0,82</td>
</tr>
</tbody>
</table>

La courbe ci-dessous illustre la variation du débit en sortie du GEP en fonction de la pression de refoulement.

![Graphique du débit nominal du GEP](image)

- figure 12 : courbe caractéristique débit - pression -
4.1. Justifier l'existence des 3 segments AB, BC et CD caractérisant la loi d'évolution de la figure 12.

REPONSE :

4.2. Déterminer la cylindrée de la pompe.

REPONSE :

4.3. Calculer le rendement du groupe GEP $n_{\text{global GEP}}$, en considérant une pression de refoulement de 100 bars (niveau de fonctionnement élevé). En déduire le rendement mécanique de la pompe.

REPONSES :

DOSSIER DE TRAVAIL - page 17/26
4.4. Moteur électrique

La pompe est entraînée par un moteur synchrone sans balai à commande hachée. Le stator est constitué de 3 bobines couplées en étoile alimentées par un onduleur.

- figure 13 : alimentation du stator -

Le stator se comporte comme un récepteur lors du passage du courant d’alimentation dans les enroulements. À la coupure du courant d’alimentation, les enroulements génèrent un courant induit dont le sens est identique au courant d’alimentation. Dans cette phase, le stator se comporte comme un générateur.

Compléter les schémas électriques ci-dessous en plaçant les transistors passants lors de la circulation du courant d’alimentation et les diodes passantes lors de la circulation du courant induit (sens des courants précisés sur la figure 13).

Indiquer sur ces mêmes schémas, les sens des courants et les chutes de tension aux bornes des différents composants présents dans chaque circuit utilisé. Exemple pour la circulation du courant d’alimentation : $U_{AC} = U_A - U_C$

Donner pour chaque cas, les relations entre la tension d’alimentation onduleur de 12 V et les différentes tensions aux bornes des composants que vous aurez placés sur les schémas.

<table>
<thead>
<tr>
<th>Circulation du courant d’alimentation</th>
<th>Circulation du courant induit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+12 \text{ V}$</td>
<td>$+12 \text{ V}$</td>
</tr>
<tr>
<td>U_{AC}</td>
<td>0 V</td>
</tr>
<tr>
<td>0 V</td>
<td>0 V</td>
</tr>
</tbody>
</table>

- figure 14 : schémas électriques -

DOSSIER DE TRAVAIL - page 18/26
4.5. On représente sur la figure 15 ci-dessous, l'évolution de la tension U_{AC} en fonction du temps pour un cycle de hachage de la tension.

Représenter l'évolution des tensions U_A / masse et U_C / masse en fonction du temps.
On précise les éléments suivants :
- t_1 correspond au temps de passage du courant d'alimentation,
- t_2 correspond au temps de passage du courant induit,
- la chute de tension Collecteur / Emetteur de l'ensemble des transistors : $U_{CE} = 0,5$ V,
- la tension de seuil aux bornes de toutes les diodes : $U_{SD} = 1$ V,
- la tension d'alimentation onduleur : $U_{alim} = 12$ V.
5. **Etude de la valve**

5.1. Gestion des débits
Comme illustré sur la figure 16, on peut représenter schématiquement la valve par des restrictions variables S_1, S_2, S_3 et S_4, traversées respectivement par les débits q_{v1}, q_{v2}, q_{v3} et q_{v4}.

- figure 16 : schématisation de principe de la valve -

Compléter le tableau ci-dessous, en indiquant pour chaque intensité du couple imprimé au volant, dans le cas d’un déplacement vers la droite du vérin, une répartition des débits traversant chaque section pour un débit global de la pompe de 4 l/mn.

<table>
<thead>
<tr>
<th>Cas de fonctionnement</th>
<th>q_{v1}</th>
<th>q_{v2}</th>
<th>q_{v3}</th>
<th>q_{v4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couple volant nul</td>
<td>2 l/mn</td>
<td>2 l/mn</td>
<td>2 l/mn</td>
<td>2 l/mn</td>
</tr>
<tr>
<td>Couple volant modéré</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Couple volant maximal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Couple volant maximal avec vérin en butée coté droit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2. Loi de valve
La loi de valve (courbe nominale) fournie dans le Dossier Technique (fig. 12), se rapporte à un débit donné. Indiquer l’incidence d’une augmentation du débit sur le fonctionnement de la direction.

REPONSE :
6. Étude d’un dysfonctionnement de l’assistance

Problématique liée à l’étude :

Le propriétaire d’une Peugeot 407 constate un durcissement de sa direction et par ailleurs l’affichage du témoin de direction sur le combiné.

6.1. Avant d’effectuer une lecture avec l’outil de diagnostic, le technicien remarque que la pompe tourne dès la mise du contact +Apc, alors que le moteur thermique est à l’arrêt.

Lister les informations qui doivent normalement permettre la mise en action du GEP et indiquer si cette procédure d’alimentation est conforme au chronogramme du constructeur.

REPONSE :

6.2. En effectuant une analyse des réseaux multiplexés et des schémas électriques fournis en annexe du Dossier Technique, tracé un synoptique permettant de visualiser les informations nécessaires à la mise en action du moteur du GEP.

Vous préciserez si les liaisons utilisées sont de type filaires ou multiplexées, ainsi que l’appellation des réseaux utilisés et la ou le(s) référence(s) des composants véhiculant ces informations.

REPONSE :

DOSSIER DE TRAVAIL - page 21/26

Tournez la page S.V.P.
6.3. L'outil de diagnostic utilisé, soit un réseau multiplexé, soit un réseau filaire pour dialoguer avec les différents calculateurs. D'après le schéma électrique de la prise diagnostic, indiquer comment s'effectue la communication avec le calculateur du GEP et la(s) référence(s) des fils concernés.

6.4. À la mise du contact, le technicien a mesuré une tension de 12 V par rapport à la masse sur la borne 1 du connecteur 2 voies Noir du PSF1.
Dans le cas où l'information + Apc n'est pas présente sur la borne 7 du calculateur du GEP, indiquer, en vous référant au schéma électrique approprié, les contrôles et les mesures que vous effectueriez avec un multimètre pour diagnostiquer ce problème.

REPONSES :

6.5. L'information +Apc étant bien présente sur la borne 7 du GEP, le technicien effectue ensuite une lecture de défauts présents dans le calculateur de direction.

<table>
<thead>
<tr>
<th>07</th>
<th>Direction assistée</th>
<th>Défaut permanent. Abduction de communication avec le capteur d'angle volant. Information rotation volant absente ou perdue.</th>
</tr>
</thead>
<tbody>
<tr>
<td>07</td>
<td>Direction assistée</td>
<td>Défaut permanent. Absence de communication avec le calculateur contrôle moteur. Information état moteur thermique manquante.</td>
</tr>
<tr>
<td>07</td>
<td>Direction assistée</td>
<td>Défaut permanent. Absence de communication avec le PISP. Information rotation véhicule manquante.</td>
</tr>
</tbody>
</table>

En procédant à une analyse des réseaux multiplexés et des schémas électriques figurant dans le Dossier Technique, tracer un synoptique permettant de visualiser le cheminement des informations manquantes figurant dans le relevé de défauts ci-dessus.

Vous préciserez si les liaisons utilisées sont de type filaires ou multiplexées ainsi que la désignation des réseaux utilisés et la ou le(s) référence(s) des composants véhiculant l'information.
6.6. Le technicien poursuit son diagnostic par une lecture des paramètres du calculateur de direction. Le relevé de ces paramètres est effectué véhicule à l'arrêt, moteur au ralenti sans solliciter le volant.

Indiquer le(s) paramètre(s) qui vous semble(nt) non conforme(s) et justifier votre réponse.

REponse :

Indiquer la où les cause(s) susceptible(s) de provoquer le problème constaté et proposer des mesures complémentaires permettant de valider vos hypothèses.

REPONSE :

6.8. Le contact véhicule coupé, le technicien mesure avec un ohmmètre, à l’aide d’une boîte à bornes connectée en parallèle sur les bornes 1 et 2 du capteur volant 7700, une résistance de 60,1 Ω.
Contact véhicule toujours coupé, il débranche le connecteur 9 voies noir du GEP 7122 et mesure une résistance infinie entre les bornes 1 et 4 de ce connecteur.
Que pouvez-vous déduire de ces mesures ?

REPONSE :

6.9. Indiquer le mode de fonctionnement du calculateur pouvant être à l’origine du problème énoncé à la question 6.1 et les valeurs des paramètres relevés.

REPONSE :

DOSSIER DE TRAVAIL - page 24/26
7. Étude du comportement routier du véhicule

Problématiques liées à l'étude :

En plus du constat relé dans l'étude précédente, le propriétaire du véhicule, surpris par le peu de maniabilité de celui-ci, heurte un trottoir lors d'un virage serré sur le trajet qui le mène à la concession.

On précise que :

- Les deux relevés fournis dans l'annexe 8 du Dossier Technique, ont été effectués en respectant les conditions de mesures imposées par le constructeur.

- Les valeurs mentionnées sur les relevés sont arrondies à la minute près. L'angle inclus précisé correspond (du fait de l'appareil employé), à la somme des angles de pivot et de carrossage.

- Une valeur positive du parallélisme correspond à un pincement des roues et une valeur négative à une ouverture des roues.

- La divergence de braquage donnée dans le tableau est mesurée lors d'un braquage des roues à 20°.

- L'angle de poussée (offset) est égale au : \[(\| ARd - \| ARg \|) / 2 \]

"Le premier compte rendu de mesures nous donne un angle de poussée de :
\[(0°16' - 0°13') / 2 = 0°1'30'', soit 0°02'\]

7.1. Par lecture des relevés effectués, indiquer les mesures ne correspondant pas aux données du constructeur.

RÉPONSE :

7.2. Lister les pièces pouvant être à l'origine de ces mesures défectueuses.

RÉPONSE :

DOSSIER DE TRAVAIL - page 25/26

Tournez la page S.V.P.
7.3. Le propriétaire a précisé au réceptionnaire que son véhicule roulait en ligne droite mais avec un volant décalé. Indiquer d’après les relevés, le sens de décalage des branches (sens horaire ou sens anti-horaire). Justifier votre réponse.

REPONSE :

7.4. Lorsque le véhicule est en roulage, volant lâché, le véhicule continue à rouler en ligne droite. Les valeurs de parallélisme de chacune des roues avant sont alors identiques. Expliquer l’origine de ce phénomène d’équilibrage (avec un schéma si nécessaire).

REPONSE :