CONCOURS EXTERNE DE RECRUTEMENT
DE PROFESSEURS DE L’ENSEIGNEMENT PROFESSIONNEL
ET CONCOURS D’ACCÈS À LA LISTE D’APTITUDE

SECTION : GÉNIE INDUSTRIEL
OPTION : BOIS

ÉTUDE D’UN SYSTÈME TECHNIQUE
ET/OU D’UN PROCESSUS TECHNIQUE

Durée : 8 heures

Calculatrice électronique de poche - y compris calculatrice programmable, alphanumérique ou à écran graphique - à fonctionnement autonome, non imprimante, autorisée conformément à la circulaire n°99-186 du 16 novembre 1999.
L’usage de tout ouvrage de référence, de tout dictionnaire et de tout autre matériel électronique est rigoureusement interdit.

Dans le cas où un(e) candidat(e) repère ce qui lui semble être une erreur d’énoncé, il (elle) le signale très lisiblement sur sa copie, propose la correction et poursuit l’épreuve en conséquence.
De même, si cela vous conduit à formuler une ou plusieurs hypothèses, il vous est demandé de la (ou les) mentionner explicitement.

NB : Hormis l’en-tête détachable, la copie que vous rendez ne devra, conformément au principe d’anonymat, comporter aucun signe distinctif, tel que nom, signature, origine, etc. Si le travail qui vous est demandé comporte notamment la rédaction d’un projet ou d’une note, vous devrez impérativement vous abstenir de signer ou de l’identifier.

Tournez la page S.V.P.
Chaque partie sera traitée sur feuilles de copie séparées ou, si précisé, sur document réponse.

Partie 1 : Conception de produit
Partie 2 : Analyse fonctionnelle
Partie 3 : Contrôle d’un moyen de mesure
Partie 4 : Gamme de pose et planification des tâches
Partie 5 : Calcul de coût
Partie 6 : Gestion de production

Chaque partie peut être traitée de façon indépendante.
SUJET

Contexte de l'étude

Une entreprise produit des escaliers haut de gamme avec des méthodes très traditionnelles. Elle souhaite conserver sa spécificité produit, mais moderniser sa philosophie, son atelier et ses méthodes de travail.

PARTIE 1 CONCEPTION

Données

L'escalier à implanter est un escalier à un quartier tournant, montée à droite et sans palier de repos. Il doit se mettre en œuvre dans la zone d'implantation définie sur le document technique DT 2. Les dimensions données correspondent à celles du gros œuvre. La hauteur totale à franchir est de 2994 mm. L'emmachement peut varier de 800 à 1000 mm. La reculée disponible n'est pas limitée.
Descriptif de l'ouvrage :

Rez de chaussée
 Dalle pleine sur sous-sol complet.
 L'émission calorifique est assurée par un système de chauffage hydraulique rayonnant
 par le sol, à basse température, incorporé dans une dalle flottante (chape fluide) de 40
 mm d'épaisseur.

Paroi verticale
 Refend en béton armé de 160 mm d'épaisseur.

Plancher d'étage
 Système de ferme cadre avec diaphragme et plafond suspendu, épaisseur totale 460
 mm. Une réservation de 34 mm est laissée pour le revêtement du sol et son support.

Travail demandé

1.1 Lister les contraintes à prendre en compte pour le dimensionnement de l'escalier.

1.2 Dimensionner l'escalier et montrer que les contraintes citées précédemment sont
 respectées.

1.3 Etablir une vue en plan sommaire (marches, occupations limons et poteaux, sans
 contremarches et lignes cachées) de l'escalier dans son environnement avec les traits de
 construction de la méthode de balancement employée.

1.4 Proposer sous forme de schéma des solutions pour les détails d'exécution suivants :

 - Raccordement limon/poteau
 - Marche palière

PARTIE 2 ANALYSE FONCTIONNELLE

Contexte

Dans le cadre d'une analyse fonctionnelle, il s'agit de proposer une essence de bois en utilisant
un modèle d'aide à la décision.

Travail demandé

2.1 Rechercher les fonctions de service liées au produit escalier. Utiliser la méthode A.P.T.E.®
(type rosace des fonctions) Les fonctions principales et contraintes devront être parfaitement
distinguées.

2.2 Etudier et évaluer les différentes essences décrites dans le document ressources DR 3.

 La démarche sera structurée, elle utilisera une méthode dans l'esprit de l'analyse de la valeur.
 Les critères retenus et leur pondération seront à l'initiative des candidats.

2.3 Présenter une analyse de vos résultats.
PARTIE 3 CONTROLE D’UN MOYEN DE MESURE

Contexte

Les marches étant d’assez grande largeur, elles sont obtenues par panneautage. L’humidité du bois destiné à la fabrication de celles-ci est obtenue par mesure de résistance électrique.

Suite à des pathologies mettant en cause l’état hygrométrique du matériau bois, des mesures de l’humidité par la méthode normalisée ont été réalisées sur un lot d’éprouvettes parallèlement à la méthode habituelle. Les mesures et résultats figurent dans le tableau ci-dessous :

<table>
<thead>
<tr>
<th>Eprouvette</th>
<th>Masse humide</th>
<th>Masse anhydre</th>
<th>Humidité par pesées</th>
<th>Humidité par mesure de résistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23,1 g</td>
<td>20,5 g</td>
<td></td>
<td>15,8 %</td>
</tr>
<tr>
<td>2</td>
<td>24,4 g</td>
<td>21,6 g</td>
<td>12,8 %</td>
<td>15,4 %</td>
</tr>
<tr>
<td>3</td>
<td>25,3 g</td>
<td>22,4 g</td>
<td>12,8 %</td>
<td>15,6 %</td>
</tr>
<tr>
<td>4</td>
<td>24,4 g</td>
<td>21,8 g</td>
<td>12,0 %</td>
<td>15,5 %</td>
</tr>
<tr>
<td>5</td>
<td>26,8 g</td>
<td>23,7 g</td>
<td>13,0 %</td>
<td>15,0 %</td>
</tr>
<tr>
<td>6</td>
<td>25,4 g</td>
<td>22,6 g</td>
<td>12,2 %</td>
<td>15,1 %</td>
</tr>
<tr>
<td>7</td>
<td>28,1 g</td>
<td>25,1 g</td>
<td>12,0 %</td>
<td>15,2 %</td>
</tr>
<tr>
<td>8</td>
<td>27,9 g</td>
<td>24,9 g</td>
<td>11,9 %</td>
<td>15,2 %</td>
</tr>
<tr>
<td>9</td>
<td>29,7 g</td>
<td>26,3 g</td>
<td>12,9 %</td>
<td>15,2 %</td>
</tr>
<tr>
<td>10</td>
<td>27,7 g</td>
<td></td>
<td>12,3 %</td>
<td>15,4 %</td>
</tr>
<tr>
<td>11</td>
<td>24,0 g</td>
<td>21,5 g</td>
<td>11,5 %</td>
<td>14,4 %</td>
</tr>
<tr>
<td>12</td>
<td>25,4 g</td>
<td>22,9 g</td>
<td>11,1 %</td>
<td>14,0 %</td>
</tr>
<tr>
<td>13</td>
<td>26,7 g</td>
<td>23,5 g</td>
<td>13,5 %</td>
<td>16,4 %</td>
</tr>
<tr>
<td>14</td>
<td>24,1 g</td>
<td>21,4 g</td>
<td>12,7 %</td>
<td>15,6 %</td>
</tr>
<tr>
<td>15</td>
<td>23,4 g</td>
<td>20,9 g</td>
<td>12,0 %</td>
<td>14,9 %</td>
</tr>
<tr>
<td>16</td>
<td>26,0 g</td>
<td>23,2 g</td>
<td>12,1 %</td>
<td>15,0 %</td>
</tr>
<tr>
<td>17</td>
<td>30,3 g</td>
<td>26,8 g</td>
<td>12,9 %</td>
<td>15,8 %</td>
</tr>
<tr>
<td>18</td>
<td>27,6 g</td>
<td>24,5 g</td>
<td>12,7 %</td>
<td>15,6 %</td>
</tr>
<tr>
<td>19</td>
<td>25,6 g</td>
<td>22,7 g</td>
<td>12,6 %</td>
<td>15,5 %</td>
</tr>
<tr>
<td>20</td>
<td>24,4 g</td>
<td>21,7 g</td>
<td>12,5 %</td>
<td>15,4 %</td>
</tr>
<tr>
<td>21</td>
<td>28,3 g</td>
<td>25,1 g</td>
<td>12,9 %</td>
<td>15,4 %</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>24,9 g</td>
<td>12,5 %</td>
<td>15,7 %</td>
</tr>
<tr>
<td>23</td>
<td>26,8 g</td>
<td>23,8 g</td>
<td>12,7 %</td>
<td>15,7 %</td>
</tr>
<tr>
<td>24</td>
<td>25,5 g</td>
<td>22,6 g</td>
<td>12,8 %</td>
<td>14,9 %</td>
</tr>
<tr>
<td>25</td>
<td>24,3 g</td>
<td>21,7 g</td>
<td>12,1 %</td>
<td>15,9 %</td>
</tr>
<tr>
<td>26</td>
<td>31,5 g</td>
<td>28,1 g</td>
<td>12,2 %</td>
<td>15,1 %</td>
</tr>
<tr>
<td>27</td>
<td>29,4 g</td>
<td>26,2 g</td>
<td>12,3 %</td>
<td>14,9 %</td>
</tr>
<tr>
<td>28</td>
<td>26,3 g</td>
<td>23,4 g</td>
<td>12,3 %</td>
<td>14,8 %</td>
</tr>
<tr>
<td>29</td>
<td>27,6 g</td>
<td>24,6 g</td>
<td>12,3 %</td>
<td>15,8 %</td>
</tr>
<tr>
<td>30</td>
<td>25,0 g</td>
<td>22,2 g</td>
<td>12,5 %</td>
<td>15,2 %</td>
</tr>
</tbody>
</table>
Travail demandé

3.1 Pour quelles raisons doit-on maîtriser l'humidité du matériau ?

3.2 Calculer les valeurs manquantes du tableau ci-dessus.

3.3 Vérifier la normalité des mesures par humidimètre avec la méthode de votre choix.

3.4 Déterminer les valeurs statistiques correspondant à chaque méthode.

3.5 Le procédé par mesure de résistance électrique est-il juste ?

La valeur vraie est considérée comme étant la valeur obtenue par la méthode normalisée.

3.6 Commenter les résultats obtenus.

PARTIE 4 ETUDE DE FABRICATION

Données

L'étude porte sur la mise au point de la fabrication d'une marche balancée définie dans le document technique DT 4. Les aptitudes à réaliser un transfert de cote, à maîtriser les conditions d'usinage seront particulièrement prises en compte. Les cotes tolérancées à prendre en compte sont les suivantes :

- Épaisseur de la marche 34 +/- 0,2
- Profondeur de la rainure 10 +/- 0,5

Travail demandé

4.1 Proposer un mode d'obtention du brut capable de la marche balancée définie dans le document technique DT 4.

4.2 Vérifier la capabilité de la défonceuse à commande numérique à usiner la rainure.

La dispersion de la DEF CN est de 0,3 mm.

4.3 Etablir la gamme de fabrication de la marche balancée définie dans le document technique DT 4.

4.4 Décrire l'outillage utilisé pour la phase de défonçage : type et caractéristiques, matière des outils, conditions d'utilisation...Croquis possibles.

4.5 Rédiger le bordereau de programmation après avoir établi un algorithme de développement.

4.6 Etablir le contrat de la phase de défonçage sur MOCN.
PARTIE 5 GAMME DE POSE ET PLANIFICATION DE TACHES

Situation initiale

L’escalier concerné est celui étudié précédemment. L’ouvrage est « rendu chantier », à plat et en pièces détachées. La trémie et la zone de pose sont dégagées. Le sol du rez de chaussée est terminé. Le revêtement final à l'étage reste à poser. Les murs ne sont pas encore peints.

Travail demandé

5.1 Présenter sous forme de tableau une gamme de pose de l’ouvrage.

Outre la chronologie des phases, les colonnes comporteront les indications suivantes :

<table>
<thead>
<tr>
<th>Nom et croquis de phase</th>
<th>Outils</th>
<th>Cons</th>
<th>Sécurité</th>
<th>MO</th>
<th>Tps</th>
</tr>
</thead>
</table>

MO : nombre de personnes intervenant simultanément sur la tâche
Tps : temps prévisionnel (en centième d’heure ch) nécessaire à l’élaboration de la tâche.
Sécurité : observations relatives à la sécurité (rédigées ou dessinées)
Cons : Fournitures consommables utilisées lors de la phase. La désignation et le choix de celles-ci sont à l’initiative du candidat.
Outils : Petit outillage et outillage électroportatif (mesure, tracé, usinage, levage etc.) utilisés dans la phase.

5.2 Établir un planning des phases de montage de l’ouvrage. Une présentation de type Gantt est souhaitée. Ce document fera également apparaître les charges en personnel.

PARTIE 6 CALCUL DE COUT

Contexte

Dans sa gamme, l’entreprise fabrique des escaliers droits. L’escalier droit est défini sur le document technique DT 4. Le nombre de marches est la seule variable de ce produit.
En s’appuyant sur un historique d’entreprise, temps de base, gamme de fabrication, rendement, coûts matière, etc. le candidat conduira l’étude de prix d’une unité d’ouvrage élémentaire (UOE).
Cette UOE sera une marche d’escalier.
Le prix pour un escalier droit sera donc de n x UEO. « n » correspondant au nombre de marches de l’ouvrage considéré.

Les valeurs et coefficients habituellement utilisés dans l’entreprise sont :

Ch : Coût horaire en déboursé sec = 27 €
FG : Frais Généraux = 10% de PVHT
B (prévu): Bénéfice prévu = 6%
TVA : Taxe sur la valeur ajoutée = 19.6%

Tournez la page S.V.P.
Travail demandé

6.1 Présenter schématiquement la structure d'un prix de vente hors taxes.

6.2 Calculer le prix correspondant à l'UOE définie précédemment.

PARTIE 7 GESTION DE PRODUCTION

Contexte

La production des balustres des escaliers de cette entreprise est classique et renouvelable. Afin de limiter les stocks de balustres, l'entreprise envisage une gestion en flux tendu de cette production.

7.1 Développer l'esquisse d'une gestion de production à flux tendu (dans l'esprit de la méthode Kanban).

Certaines données sont consignées dans le document ressource DR 6.
DOCUMENTS RESSOURCES

Document Ressource 1 : Escaliers en bois - spécifications 3 pages
Document Ressource 2 : Balancement des marches 2 pages
Document Ressource 3 : Fiches essences 3 pages
Document Ressource 4 : Extraits tarifs 1 page
Document Ressource 5 : Programmation 1 page
Document Ressource 6 : Données techniques 2 pages
5 Performances et spécifications associées aux rôles fonctionnels et à la sécurité

5.1 généralités
La fonction principale d'un escalier est de permettre le passage d'un niveau à un autre d'un bâtiment. Ceci doit se faire avec un minimum de sécurité, d'aisance et de confort.

Les spécifications définies ci-après sont définies pour les escaliers destinés à un usage intérieur.

5.1.1 Classement d'usage
On distingue trois classes d'escalier en fonction du rapport H/G :

- raide (non recommandé) $1,32 > H/G \geq 1$
- courant $1 > H/G \geq 0,78$
- confortable $H/G < 0,78$

où :
H est la hauteur de la marche,
G est le giron de l'escalier.

De plus, le module donné par la relation $G + 2H$ doit être compris entre 580 mm et 640 mm sur une volée droite.

5.1.3 hauteur des marches et giron
Hauteur maximale des marches : 210 mm, à l'exclusion de la marche de départ.

Pour des raisons de confort mais surtout de sécurité, on doit conserver sur une volée, un giron et une hauteur de marche constants.

5.1.4 Échappée
L'échappée, mesurée sur la ligne de foulée, est d'au moins 1,90 m, néanmoins la valeur de 2,10 m est recommandée.

5.3 Comportement aux contraintes d'usage et spécifications des éléments constitutifs
L'escalier est conçu et réalisé de telle manière qu'il conserve ses propriétés principales pendant une durée de vie économiquement raisonnable, ceci malgré l'effet des agents qui agissent sur lui, mais sous réserve d'un entretien et d'un usage normal.

Une dégradation partielle des performances est admise dans le temps, dans la limite, par exemple, de ce qui peut être restauré lors d'interventions d'entretien.

5.3.3.2 marches
Pour les escaliers dont l'emmarchement est inférieur ou égal à 1 m, les marches ne doivent pas présenter de flèche supérieure au 1/300ème de la portée lorsqu'elles sont soumises à une charge ponctuelle de 1,5 kN.

Pour les marches balancées, en dehors des escaliers hélicoïdaux, la flèche maximale est de 1/200e de la portée.

Pour les escaliers dont l'emmarchement est supérieur à 1 m, les flèches maximales définies ci-dessus devront être respectées sous les charges d'exploitation définies dans la norme NF P 06-001, multipliées d'un facteur 4 pour tenir compte des effets dynamiques.
A défaut d'un calcul ou d'un essai, les tableaux suivants donnent les épaisseurs minimales des marches (balancées ou sur volée droite), qu'il faut respecter dans les bâtiments d'habitation.

<table>
<thead>
<tr>
<th>Essence de bois</th>
<th>Portée : L (mm)</th>
<th>SANS CONTREMARCHE</th>
<th>AVEC CONTREMARCHE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Largeur des marches : b (mm)</td>
<td>170</td>
<td>200</td>
</tr>
<tr>
<td>Résineux C 18</td>
<td>700</td>
<td>34</td>
<td>32</td>
</tr>
<tr>
<td>Module E = 9 000 MPa</td>
<td>800</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>40</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>1 000</td>
<td>42</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>1 200</td>
<td>48</td>
<td>45</td>
</tr>
<tr>
<td>Résineux C 24</td>
<td>700</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>Module E = 11 000 MPa</td>
<td>800</td>
<td>34</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>1 000</td>
<td>40</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>1 200</td>
<td>46</td>
<td>42</td>
</tr>
<tr>
<td>Résineux C 30</td>
<td>700</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>Module E = 12 000 MPa</td>
<td>800</td>
<td>33</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>36</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>1 000</td>
<td>39</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>1 200</td>
<td>43</td>
<td>41</td>
</tr>
<tr>
<td>Feuillus D 30 et D 35</td>
<td>700</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td>Module E = 10 000 MPa</td>
<td>800</td>
<td>35</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>38</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>1 000</td>
<td>41</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>1 200</td>
<td>46</td>
<td>44</td>
</tr>
<tr>
<td>Feuillus D 40</td>
<td>700</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>Module E = 11 000 MPa</td>
<td>800</td>
<td>34</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>1 000</td>
<td>40</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>1 200</td>
<td>45</td>
<td>42</td>
</tr>
<tr>
<td>Feuillus D 50</td>
<td>700</td>
<td>29</td>
<td>28</td>
</tr>
<tr>
<td>Module E = 14 000 MPa</td>
<td>800</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>34</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>1 000</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>1 200</td>
<td>41</td>
<td>39</td>
</tr>
<tr>
<td>Feuillus D 60</td>
<td>700</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>Module E = 17 000 MPa</td>
<td>800</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>1 000</td>
<td>34</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>1 200</td>
<td>39</td>
<td>37</td>
</tr>
<tr>
<td>Feuillus D 70</td>
<td>700</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td>Module E = 20 000MPa</td>
<td>800</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>1 000</td>
<td>33</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>1 200</td>
<td>37</td>
<td>35</td>
</tr>
</tbody>
</table>
5.3.4 résistance au poinçonnement et à l'usure
L'indication des performances se fait au sein de classes, définies pour les conditions d'usage suivantes :

- FT Escaliers à faible trafic.
- TI Escaliers à trafic intense.

Les escaliers intérieurs destinés aux bâtiments d'habitation individuelle entrent dans la catégorie FT. Les escaliers extérieurs entrent dans tous les cas en catégorie TI.

Les autres types d'escaliers entrent en catégorie FT ou TI selon l'estimation qui en est faite.

5.3.4.1 Résistance au poinçonnement
Les couches supérieures des marches doivent subir une pénétration limitée aux actions de poinçonnement.

Pour les escaliers de catégorie TI, l'essence de bois doit être de dureté MONNIN supérieure à 2,5.

EXEMPLE Chêne, Châtaignier, Hêtre, Pin Maritime, Iroko, Doussié, Moabi, Movingui, Niangon, Pau Marfim (Pau Amarello), Couratari (Tauri).

Pour les escaliers de catégorie FT, l'essence de bois doit être de dureté MONNIN comprise entre 1,25 et 2,5.

EXEMPLE Epicéa, Sapin, Douglas, Pin Sylvestre.

5.3.4.2 Résistance à l'usure
Les couches supérieures des marches (finition essentiellement) doivent subir une dégradation limitée (perte de matière, variation d'épaisseur, changement d'aspect,...) lorsqu'elles sont soumises à l'abrasion.
BALANCEMENT DES MARCHES (Pl. I)

Le balancement a pour but de réduire proportionnellement le collet des marches tout en gardant la même largeur de giron. Les spécialistes balancent souvent à vue, mais cela demande une grande habitude.
Il n’y a pas de règle absolue pour déterminer le nombre de marches à balancer, plus il y a de marches balancées moins les collets sont étroits mais plus la courbe du limon est prononcée.

Balancement par la herse (fig. 1)
Tracer sur la ligne de giron le nez des marches et déterminer les marches à balancer, de la 7e à la 14e incluse par exemple.
Tracer la diagonale AB.
Tête herse — Sur une droite VW porter autant de giron qu’il y a de marches à balancer plus la distance 11 x.
Élever une perpendiculaire de 7° en A’.
Joindre 7° 8° 9° 10° 11° x’ à A’ et rabattre A’ en A”. Joindre 7° à A”. Les sections proportionnelles donnent les largeurs des collets.
Procéder de même pour les marches 12-13-14-15.
Le balancement par la herse est aussi utilisé pour les escaliers sans poteau (fig. 3).
La longueur à porter sur les droites VW est le développement de la ligne mixte 9° A pour la première herse et celui de la ligne 17° à pour la seconde herse.

Balancement par le développement de l’arête intérieure du limon (fig. 3)
Le nez des marches sur la ligne de giron étant situé, supposer que les marches sont parallèles dans les parties droites et rayonnantes pour la section courbe ; soit les points 7° 10° 11° 12°... 15° 16°.
Sur une droite VW porter toutes ces divisions. Élever une perpendiculaire et tracer la hauteur des marches. L’intersection avec les perpendiculaires donne le développement du limon, mais la ligne est brisée, l’adoucir en traçant avec une cerce une courbe concave jusqu’à l’axe et convexe ensuite.
L’intersection avec les lignes de hauteur donne la largeur des collets à reporter.
Ce tracé est moins théorique que le balancement par la herse. La courbe plus souple, laisse à l’œil une part plus grande de décision.
Dans certains cas le développement se fait sur l’arête extérieure, c’est-à-dire côté jour, le tracé est le même, mais les distances à reporter sont prises côté lunette.

Balancement par le développement des marches (fig. 4 et 5)
Quand le limon en retrait par rapport aux marches il n’est pas possible de faire le balancement sur le limon. Les giron sont renvoyés d’équerre ou joint à l’angle A (fig. 4) ou renvoyés d’équerre et rayonnant (fig. 5).
Porter chaque distance obtenue sur une droite. Élever une perpendiculaire et porter les hauteurs comme pour le tracé de la figure 3.