Evolution d’une station d’embouteillage

Dossier technique :
En gras : Les nouvelles unités à installer

Détail Technique

Batterie de compensation 40bars 132kW
Compresseur 7bars 159kW
Souffleuse 216kW
Pompes 11kW
Fardeleuse 48kW
Armoire div. 11,29kW
Convoeurs 6,12kW
Palettiseur 4kW
Four 2,37kW
Housseuse 11kW
Soutrelleuse 10,6kW
Etiqueteuse 4,75kW
Train d'expédition 9kW
Armoire div. 4,5kW
Ateliers 9kW
Eclairage 9kW
Prises courant 9kW
Lorsqu'une installation est alimentée par un réseau de distribution publique, les caractéristiques de la protection générale et du comptage doivent être définies en accord avec le distributeur.

Norme NF C 13-100 - poste de livraison

\((1kV \leq U_n \leq 33 \text{ kV} ; \, \, \, \, \, \, I_n \leq 400 \text{ A}) \) La norme s'applique aux installations électriques qui constituent le poste de livraison de l'énergie électrique à un utilisateur.

Le poste de livraison est raccordé au réseau de distribution publique sous une tension nominale comprise en pratique entre 1 kV et 24 kV (33 kV au sens de la norme) en courant alternatif. Le courant assigné de l'équipement MT du poste est \(\leq 400 \text{ A} \).

Norme NF C 13-200 - installations électriques HT

\((1kV \leq U_n \leq 63 \text{ kV}) \) La norme s'applique aux installations électriques alimentées en courant alternatif sous une tension nominale comprise entre 1 kV et 63 kV, pour une fréquence inférieure à 100 Hz.

Ces installations peuvent être alimentées :
- par un réseau de distribution publique par l'intermédiaire d'un poste de livraison
- par une source autonome d'énergie
- par un réseau de distribution publique et une source autonome d'énergie.

Limites d'application

Les normes définissent les conditions qui doivent être établies et maintenues pour assurer la sécurité des personnes, la conservation des biens et pour limiter les perturbations dans le fonctionnement du réseau lorsque les installations sont raccordées à un réseau de distribution publique.

Légendes des schémas

- O : Point de raccordement du poste au réseau de distribution MT.
- C : Comptage.
- A : Appareil de sectionnement (sectionneur ou interrupteur-sectionneur).
- D : Dispositif de protection MT
- S : Dispositif de sectionnement ou de mise à la terre.
- T : Transformateur MT/HT
transformateurs de distribution HTA/BT

type cabine, immergés dans de l’huile minérale
de 50 à 2500 kVA
tension d’isolement ≤ 24 kV – NF EN 50464-1, pertes B₃ < B₁ (Haut rendement)

nomes
Transformateurs conformes aux normes :
- NF EN 50464-1
- NF EN 60776-1 à 10
Protocoles conformes aux normes et tests de performance garantis

description
Transformateurs de distribution triphasés, 50 Hz, immergés dans de l’huile minérale, présentant les caractéristiques suivantes :
- étanché à remploi total (ERT)
- couvercle boulonné sur cuve
- refroidissement naturel type ONAN
- type intérieur - type extérieur (selon équipements et options sélectionnées)
- traitement de surface anticorrosion
- classe de corrosivité C3, durabilité

* Moyenne *(selon ISO 12844-2)
- teinte finale RAL 7033
- indice de protection IP60 (version sans capot)

diélectrique liquide
- huile minérale isolante neuve
- testé selon CEI 60286
- compatible avec tous les composants du transformateur

équipements de base
- 1 commutateur de régleur sur couvercle
- 3 ou 5 positions, manœuvrable hors tension et cadencable
- 3 traversées emboîchables
- HTA 250 A / 24 kV sur couvercle
- 4 traversées passe-temps BT (à partir de 250 kVA)
- 4 traversées porcelaine BT (à partir de 160 kVA)
- 4 galets de roulement pieds et orientables
- 2 anneaux de levage et de découpage
- 2 eixets de tirage sur châssis
- 3 bornes de terre sur couvercle (gazaine M12)
- 1 orifice de remplissage
- 1 dispositif de vidage (type A22) à partir de 1000 kVA
- 1 plaque signalétique en aluminium
- système de verrouillage des traversées

options
- relais de protection (DMCHR ou DGPTZ) sur armoire de remplissage
- 1 doigt de gant libre
- dispositif de contrôle dans doigt de gant (thermomètre 1 ou 2 contacts à suggler à max., thermostat 2 contacts, etc.)
- 3 traversées porcelaine HTA 250 A
- 4 traversées porcelaine BT (à partir de 250 kVA)
- capot BT pliable type IP21 ou IP54 (uniquement avec traversées emboîchables côté HTA)
- sac de préhension

caractéristiques électriques

<table>
<thead>
<tr>
<th>puissance assignée (kVA)</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>250</th>
<th>315</th>
<th>400</th>
<th>500</th>
<th>630</th>
<th>800</th>
<th>1250</th>
<th>1600</th>
<th>2000</th>
<th>2500</th>
</tr>
</thead>
<tbody>
<tr>
<td>tension assignée</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 et 20 kV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>niveau d'isolement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2410 V entre phases, 237 entre phases et neutre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>répartition horaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24 kV pour 20 kV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>couplage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 et 20 kV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>portes (kW)</td>
<td></td>
</tr>
<tr>
<td>tension de court-circuit (%)</td>
<td>4</td>
</tr>
<tr>
<td>charge</td>
<td>10%</td>
<td>20%</td>
<td>30%</td>
<td>40%</td>
<td>50%</td>
<td>60%</td>
<td>70%</td>
<td>80%</td>
<td>90%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>puissance acoust. L₉/ₐ</td>
<td>42</td>
<td>44</td>
<td>47</td>
<td>50</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>pression acoust. L₉/A 1m</td>
<td>33</td>
<td>35</td>
<td>37</td>
<td>40</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>47</td>
<td>49</td>
<td>51</td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>

(1) rappel sur les niveaux d’isolement :
<table>
<thead>
<tr>
<th>niveau d’isolement assigné (kV)</th>
<th>7,2</th>
<th>12</th>
<th>17,5</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>KV ral 100 Hz - 1 mm</td>
<td>30</td>
<td>28</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>KV choc 12/50 µs</td>
<td>60</td>
<td>75</td>
<td>95</td>
<td>125</td>
</tr>
</tbody>
</table>

(2) mesures selon CEI 60770-10.

Réglage de tension par commutateur.

Les manœuvres des changements de tension ou de tournage sont effectuées transformateur hors tension, et hors charge.

Pour ce faire :
- diviser à fond la molette rouge de verrouillage,
- tirer la poignée, et la tourner simultanément pour l’arrivée sur la position chauve, face à l’index,
- repousser la poignée en ventilant que l’index est bien engagé dans l’encoche correspondant à la position,
- revisser à fond la molette rouge.
Surdimensionner un transformateur est pénalisant financièrement, mais le sous-dimensionner peut avoir des conséquences sur le fonctionnement de l'installation et le vieillissement du transformateur. La puissance optimale nécessite de connaître les cycles de fonctionnement de l'installation.

On détermine la puissance appelée S_a (kVA) d'après la puissance installée et l'utilisation des récepteurs.

On la compare à la puissance S_c (kVA) du pic de consommation de l'année.

Importance du dimensionnement

Il est important de déterminer la puissance optimale d'un transformateur car :
- surdimensionner entraîne un investissement excessif et des pertes en charge plus importants ;
- sous-dimensionner entraîne un fonctionnement quasi permanent à petite charge et souvent un surchauffage avec des conséquences en chaleur ;
- rendement inférieur (c'est de 50 à 70% de sa charge nominale qu'un transformateur à meilleur rendement ;
- chauffer le transformateur, entraînant l'ouverture des appareils de protection et l'arrêt plus ou moins prolongé de l'installation
- vieillissement prématuré des isolants pouvant aller jusqu'à la mise hors service du transformateur ;
- le CEI 60345 signale qu'un dépassement de 20% de la température maximale du diélectrique de 5 °C réduit de moitié la durée de vie des transformateurs immergés.

Pour définir la puissance optimale d'un transformateur, il faut connaître le cycle de fonctionnement de l'installation alimentée : puissance appelée simultanément ou alternativement par les récepteurs dont les facteurs de puissance peuvent varier de façon importante d'un récepteur à l'autre et selon l'utilisation.

Méthode de dimensionnement

Première partie

On établit un bilan des puissances pour déterminer la puissance appelée sur le réseau. On calcule successivement :
- la puissance installée P_i, somme des puissances actives en kW des récepteurs de l'installation ;
- la puissance utilisée P_u, c'est-à-dire la partie de puissance réellement utilisée en tenant compte des facteurs ;
- l'utilisation maximale des récepteurs (car ils ne sont pas en général utilisés à pleine puissance) ;
- de simultanéité par groupes de récepteurs (car ils ne fonctionnent pas en général simultanément) ;
- la puissance appelée S_a correspondant à P_u (car la puissance assignée du transformateur est une puissance apparente en kVA) en tenant compte :
 - des facteurs de puissance k_p ;
 - des rendements k_r.

Deuxième partie

On détermine, pour la journée la plus chargée de l'année, la valeur P_c (kW) du pic de puissance maximale consommée et sa durée et la puissance apparente correspondante S_c (kVA).

Choix final

La comparaison entre S_a et S_c et les aspects économiques décident de la puissance à retenir.

Première partie : bilan des puissances

P_i (kW) installée, P_u (kW) utilisée, S_a (kVA) appelée

Liste des récepteurs de l'installation

Prendre en compte tous les récepteurs installés sans oublier les prises de courant sur lesquelles peuvent être raccordés les récepteurs mobiles.

Calcul de la puissance installée P_i (kW)

La somme des puissances actives (kW) des récepteurs listés précédemment donne la valeur de la puissance installée.

Si ce calcul n'est pas réalisable, notamment pour un poste de transformation desservant plusieurs utilisateurs (ateliers et bureaux), le tableau qui suit donne des ordres de grandeur statistiques de puissance installée suivant les types d'installation (voir aussi normes NF C 29-410 et NF C 16-100).

Exemple (fig. ci-contre) : $P_i = 10 + 30 + 60 + 25 = 65$ kW.

Tableau pour calcul approché de la puissance installée

<table>
<thead>
<tr>
<th>Type de distribution</th>
<th>Type d'exploitation</th>
<th>Puissance installée estimée</th>
</tr>
</thead>
<tbody>
<tr>
<td>Éclairage fluorescent</td>
<td>bureaux(1)</td>
<td>25 kW</td>
</tr>
<tr>
<td></td>
<td>ateliers(1)</td>
<td>15 kW-hauteur plafond 6 m</td>
</tr>
<tr>
<td></td>
<td>ateliers(2)</td>
<td>20 kW-hauteur plafond 3 m</td>
</tr>
<tr>
<td>Éclairage fluorescent</td>
<td>atelier peinture</td>
<td>35 kW</td>
</tr>
<tr>
<td></td>
<td>atelier chaudronnerie</td>
<td>45 kW</td>
</tr>
<tr>
<td></td>
<td>atelier laiterie</td>
<td>30 kW</td>
</tr>
<tr>
<td></td>
<td>atelier montage</td>
<td>70 kW</td>
</tr>
<tr>
<td></td>
<td>atelier expédition</td>
<td>50 kW</td>
</tr>
<tr>
<td></td>
<td>traitement thermique</td>
<td>700 kW</td>
</tr>
<tr>
<td></td>
<td>chauffage</td>
<td>23 kW</td>
</tr>
<tr>
<td></td>
<td>conditionnement air</td>
<td>22 kW</td>
</tr>
<tr>
<td></td>
<td>compresseur d'eau pompée</td>
<td>4 kW</td>
</tr>
</tbody>
</table>

(1) Dans le cas le plus courant d'une installation d'éclairage compensé ($\cos \varphi = 0.8$)
Facteur d'utilisation maximale et/ou de simultanéité
La puissance installée est exprimée à la puissance maximale utilisée. Pour connaître cette dernière il faut appliquer aux puissances des récepteurs ou groupes de récepteurs des coefficients de charge suivant leur fonctionnement :
- Facteur d'utilisation maximale (k.e. 1) qui correspond à la fraction de la puissance totale du récepteur utilisée.
- Facteur de simultanéité (k.e. +) qui tient compte du fait que des groupes de récepteurs ne fonctionnent pas fortement simultanément. Déterminer des facteurs de simultanéité implique la connaissance détaillée de l'installation et des conditions d'exploitation. On ne peut donc pas donner de valeurs précises applicables à tous les cas. Les normes CEI 60439-1 et NFC 15-100 donnent quelques précisions sur ces facteurs, indiquées dans le tableau ci-contre.
- Calcul de la puissance utilisée (Pu)
La somme de diverses puissances effectuées des coefficients précédents donne la puissance utilisée (Pu kW), qui est une partie de la puissance installée. Pu (kW) = 1 Pu x x . Elle peut parfois être déterminée par expérience directe.
- Exemple (page précédente) : avec les valeurs de k.e. indiquées,
 Pu = 24 + 420 + 18,75 = 482,75 kW (70 % de la puissance installée 684 kW).
 Calcul de la puissance appelée (Sa)
Les puissances des récepteurs Pr, corrigées éventuellement des coefficients Ku et ks, qui ont conduit à Pu sont des puissances actives en kW. Les puissances appelées correspondantes Sr sont ces puissances apparentes en kVA. Efff s'obtiennent à partir des puissances Pr par :
 Sn(kVA) = Pr x kV / kA
 où k.e. est le rendement du récepteur et cos e son facteur de puissance.
 La puissance appelée est la somme des diverses valeurs de Sr. Mais, à la différence des kW qui s'ajustent arithmétiquement, il s'agit ici de modules de grandeurs vectorielles d'angle ω, qui doivent être sommées vectoriellement.
 Exemple (page précédente) : il faut calculer les angles correspondant à chaque cos e (ex. pour 92° y = 0,92, pour 85° y = 0,85, etc.) et faire la sommation vectorielle (ex. vecteur de module 6 kVA et d'angle 23° + vecteur de module 24 kVA et d'angle 32° + etc.)
 Approximation dans le calcul de la puissance appelée (Ss)
Une sommation arithmétique donne un ordre de grandeur suffisant compte tenu :
- des approximations faibles (valeurs statistiques et facteurs d'utilisation)
- des valeurs faibles et voisines des angles correspondant aux cos e.
 Ss(kVA) = Pk x kV / kA
 Cet outil peut s'appliquer à diverses valeurs Pr x ks x kks les coefficients :
- 1 = du au rendements des récepteurs
- 0.75 = du au facteur de puissance.
 Ce dernier coefficient s'applique :
- directement s'il n'est pas envisagé de compensation de l'énergie réactive
- pour le calcul de cos e pour compensation si une compensation est prévue.
 Exemple (page précédente) : en supposant les rendements déjà pris en compte dans les valeurs statistiques utilisées :
 Pu = 24 + 420 + 18,75 = 553 kVA. Ce qui conduirait à un minimum de 630 kVA pour un transformer de 630 kVA minimum.
 Autre approximation possible
Moyennant certaines précautions et une expérience d'installation similaire il peut être suffisant d'appliquer à la valeur de Pu un rendement global et un facteur de puissance global cos e pour l'installation.
 Ss(kVA) = Pu / cos e
 Exemple (page précédente) : l'approximation 553 kVA correspond à :
 Sa = 482.5 kVA (où cos e y = 0,85) = 553
 Tableau de coefficients de simultanéité
 | Équipements industriels ou tertiaires | Calculer (attention à utiliser pour les lampes à décharge) | 0,25 |
 | | Ventilation directe | 1 |
 | | Conditionnement d'air | 1 |
 | Frais | Prises de courant | 1.25 |
 | | Moteurs | 0.75 |
 | | Compresseurs | 0.75 |
 | | Équipements ménagers | 0.75 |
 | | Éclairage | 1 |
 | | Chauffage électrique | 1 |
 | | Conditionnement d'air | 1 |
 | | Chauffage sans air avec la mise sous tension n'a lieu qu'à certaines heures | 0,7 |
 | | Appareils de cuisson | 0,7 |
 | | Ascenseur et monte-charge | 0,7 |
 | | À 1 seul moteur (1) | 0,75 |
 | | À 2 moteurs (1) | 0,6 |

(1) Pour les moteurs, le courant à prendre en considération est le courant nominal du moteur, majoré d'un pourcentage de démarrage.

Deuxième partie : pic de puissance (Pc) puissance maximale consommée, (Sc (kVA) puissance maximale appelée
Tranche horaire de la journée la plus chargée de l'année
Le but est d'estimer le pic de consommation et de le comparer à la valeur trouvée précédemment. Pour cela :
- déterminer la journée la plus chargée de l'année, c'est-à-dire celle où, en plus des récepteurs habituels, viennent s'ajouter des appareils de chauffage et/ou de climatisation à leur charge maximum
- découper cette journée en tranches horaires et faire pour chacune du bilan de la puissance des récepteurs fonctionnant simultanément. D'où une courbe de fonctionnement de l'installation (exemples figures ci-contre).
- La lecture de ces courbes donne la puissance maximale consommée Pc. Il lui correspond une puissance appelée en Sc(kVA) qui dépend du cos e global de l'installation sur la tranche horaire correspondante.
- Pour une installation existante dont on veut changer le transformateur ou faire évoluer la puissance, les centrales de mesure Power Logic System permettent l'engrènement direct et l'analyse des cos données.

Exemple
On a trouvé précédemment Pu = 468,5 kW et Sc = 553 kVA. Si pour la journée la plus chargée on trouve une valeur de 520 kW sur une durée de 8 heures, en supposant que cos e global soit de 0,9 sur cette période :
 Sc = 0,9 x 578 kVA

Puissance maximale appelée à retenir
Si la puissance maximale consommée correspond à un pic passager de courte durée (ex. type Pu courbe (a)), il est possible de la considérer comme une surcharge cyclique journalières (voir courbes de surcharges admissibles page ci-contre).

Exemple
Sc = 553 kVA et Sc = 578 kVA
Un transformateur 650 kVA sera chargé toute l'année à 559/630 = 0,88. Cette valeur est un peu forte (0,8 souhaitable).

Néanmoins, la pointe d'appel, de Sc = 576 kVA = 4,5 % pendant 8 h est compatible avec les surcharges cycliques admissibles. Si l'on avait trouvé 15 % pendant 8 h, la surcharge n'était pas admissible et il aurait fallu un transformateur plus puissant.

Choix final de la puissance du transformateur
Le choix final (voir type et puissances des transformateurs disponibles au chapitre B) doit prendre en compte les éléments suivants :
- durée de fonctionnement : s'il s'agit d'une installation unique, il peut être prudent de surcalibrer la puissance Sc de l'ordre de 25%.
- Influence de la température : conformément à la CEI 60558, la méthode de calcul précédente n'est valable que lorsque la température ambiante ne dépasse pas 30°C en moyenne journalière et 20°C en moyenne annuelle avec un maximum de 40°C. Au-delà, nous consulter pour décalier le transformateur.
- extension ultérieure : si elle est prévue, en tenir compte dans la détermination de la puissance Sc.
- Facteur de puissance : il doit être ramené à 0,928 pour éviter les pénalités appliquées par le distributeur d'énergie ;

 Sc = 0,928

Note : à ce sujet, que la puissance déterminée pour le transformateur s'exprime en kVA (puissance apparente) alors que la puissance souscrite auprès du distributeur d'énergie s'exprime en kW (puissance active). Noter également que l'abonné dispose d'un délai (en principe un an) pour modifier son contrat avec le distributeur d'énergie pour une installation nouvelle.
1 VALEUR DE COURT-CIRCUIT À L'ORIGINE DE L'INSTALLATION

Les tableaux ci-dessous fournissent les valeurs de résistances, réactances et courts-circuits triphasés maximaux (impédances HT nulle) pour les transformateurs immergés et secs. Ces valeurs sont calculées en fonction des éléments fournis dans le guide UTE C 15-105.

NB : Les valeurs de court-circuit données dans les catalogues constructeurs peuvent être légèrement inférieures car généralement calculées pour une tension de 420 V.

Transformateurs triphasés immergés dans un diélectrique liquide, conformes à la norme NFC 52-112 Valeurs calculées pour une tension à vide de 420 V

<table>
<thead>
<tr>
<th>S (kVA)</th>
<th>50</th>
<th>100</th>
<th>160</th>
<th>200</th>
<th>250</th>
<th>315</th>
<th>400</th>
<th>500</th>
<th>630</th>
<th>800</th>
<th>1000</th>
<th>1250</th>
<th>1600</th>
<th>2000</th>
<th>2500</th>
</tr>
</thead>
<tbody>
<tr>
<td>In (A)</td>
<td>69</td>
<td>137</td>
<td>220</td>
<td>275</td>
<td>344</td>
<td>433</td>
<td>550</td>
<td>687</td>
<td>866</td>
<td>1100</td>
<td>1375</td>
<td>1718</td>
<td>2200</td>
<td>2749</td>
<td>3437</td>
</tr>
<tr>
<td>Ucc (%)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Ik3 (kA)</td>
<td>1,81</td>
<td>3,61</td>
<td>5,78</td>
<td>7,22</td>
<td>9,03</td>
<td>11,37</td>
<td>14,44</td>
<td>18,05</td>
<td>22,75</td>
<td>19,26</td>
<td>24,07</td>
<td>30,69</td>
<td>38,52</td>
<td>48,15</td>
<td>60,18</td>
</tr>
<tr>
<td>RTR (mΩ)</td>
<td>43,75</td>
<td>21,9</td>
<td>13,7</td>
<td>16,9</td>
<td>8,75</td>
<td>6,94</td>
<td>5,47</td>
<td>4,38</td>
<td>3,47</td>
<td>4,10</td>
<td>3,28</td>
<td>2,63</td>
<td>2,05</td>
<td>1,64</td>
<td>1,31</td>
</tr>
<tr>
<td>XTR (mΩ)</td>
<td>134,1</td>
<td>67</td>
<td>41,9</td>
<td>33,5</td>
<td>26,8</td>
<td>21,28</td>
<td>16,76</td>
<td>13,41</td>
<td>10,64</td>
<td>12,57</td>
<td>10,05</td>
<td>8,04</td>
<td>6,28</td>
<td>5,03</td>
<td>4,02</td>
</tr>
</tbody>
</table>

Transformateurs secs triphasés, conformes à la norme NFC 52-115 Valeurs calculées pour une tension à vide de 420 V

S (kVA)	100	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	
In (A)	137	220	344	344	433	550	687	866	1100	1375	1718	2200	2749	3437	
Ucc (%)	6	6	6	6	6	6	6	6	6	6	6	6	6	5	5
Ik3 (kA)	2,41	3,85	4,81	6,02	7,58	9,43	12,04	15,17	19,26	24,07	30,09	38,52	48,15	60,18	
RTR (mΩ)	32,8	20,5	16,4	13,1	10,42	8,2	6,52	5,21	4,10	3,28	2,63	2,05	1,64	1,31	
XTR (mΩ)	100	62,8	50,3	40,2	31,9	23,1	20,11	15,96	12,57	10,05	8,04	6,28	5,03	4,02	
Méthode de Composition

Cette méthode est une approche simplifiée.

Connaissant le courant du court-circuit triphasé à l’origine de l’installation, elle permet d’estimer le courant de court-circuit présumé à l’extrémité d’une canalisation de longueur et section données.

Cette méthode s’applique à des installations dont la puissance n’excède pas 80 kVA.
Le courant de court-circuit maximal en un point quelconque de l’installation est déterminé à l’aide du tableau ci-dessous, à partir de:
- de la valeur de court-circuit présumée en tête de l’installation,
- de la longueur de la ligne,
- de la nature et de la section des conducteurs.

Exemple

<table>
<thead>
<tr>
<th>Cuivre</th>
<th>Longueur de la canalisation (en mètres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1,3</td>
</tr>
<tr>
<td>25</td>
<td>1,1</td>
</tr>
<tr>
<td>35</td>
<td>1,7</td>
</tr>
<tr>
<td>50</td>
<td>1,4</td>
</tr>
<tr>
<td>65</td>
<td>1,7</td>
</tr>
<tr>
<td>100</td>
<td>1,7</td>
</tr>
</tbody>
</table>

Tableau de Courant de court-circuit

<table>
<thead>
<tr>
<th>Courant de court-circuit au niveau considéré (icc aval en kA)</th>
<th>Section des conducteurs de phase (mm²)</th>
<th>Longueur de la canalisation (en mètres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0,5</td>
<td>1,5</td>
</tr>
<tr>
<td>70</td>
<td>0,7</td>
<td>1,6</td>
</tr>
<tr>
<td>50</td>
<td>0,9</td>
<td>1,6</td>
</tr>
<tr>
<td>30</td>
<td>1,1</td>
<td>1,7</td>
</tr>
<tr>
<td>20</td>
<td>1,5</td>
<td>1,8</td>
</tr>
<tr>
<td>15</td>
<td>1,6</td>
<td>1,9</td>
</tr>
<tr>
<td>10</td>
<td>1,8</td>
<td>2,1</td>
</tr>
<tr>
<td>7</td>
<td>2,1</td>
<td>2,2</td>
</tr>
<tr>
<td>5</td>
<td>2,3</td>
<td>2,4</td>
</tr>
<tr>
<td>4</td>
<td>2,4</td>
<td>2,5</td>
</tr>
</tbody>
</table>

Tableau de Courant de court-circuit en aluminium

<table>
<thead>
<tr>
<th>Courant de court-circuit au niveau considéré (icc aval en kA)</th>
<th>Section des conducteurs de phase (mm²)</th>
<th>Longueur de la canalisation (en mètres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0,6</td>
<td>1,6</td>
</tr>
<tr>
<td>10</td>
<td>0,9</td>
<td>1,7</td>
</tr>
<tr>
<td>7</td>
<td>1,1</td>
<td>1,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3</td>
<td>2,0</td>
</tr>
<tr>
<td>4</td>
<td>1,5</td>
<td>2,1</td>
</tr>
</tbody>
</table>

Dossier Technique

DT 8/52
Micrologic 2.0 A

Différentes protections

Micrologic 2.0 : protection de base

Micrologic 5.0 : protection selective

Protection Long Retard

La protection Long Retard protège les câbles (phases et neutre) contre les surcharges. La mesure est du type efficacité vraie (RMS).

Protection Instantanée

La protection Instantanée protège le réseau contre les courts-circuits francs. Contrairement à la protection Court Retard, la protection Instantanée ne possède pas de réglage de temporisation. L'ouverture d'ouverture a été donnée au disjoncteur dès que le courant dépasse le seuil paramétré, avec une temporisation fixe de 20 ms.

Protection Court Retard

Le paramétrage de la temporisation Court Retard permet d'assurer la sélectivité avec un disjoncteur aval.

Notez que les paramètres doivent être ajustés en fonction des besoins spécifiques de l'installation.
Protection Long Retard et Instantanée Micrologic 2.0

Protection Long Retard

<table>
<thead>
<tr>
<th>Réduction de vitesse</th>
<th>Nominal (kVA)</th>
<th>Impédance (p.u.)</th>
<th>Durée (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>50</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>0.8</td>
<td>60</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>0.8</td>
<td>70</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>0.8</td>
<td>80</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>0.8</td>
<td>90</td>
<td>0.8</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Protection Instantanée

<table>
<thead>
<tr>
<th>Réduction de vitesse</th>
<th>Nominal (kVA)</th>
<th>Impédance (p.u.)</th>
<th>Durée (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>50</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>0.8</td>
<td>60</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>0.8</td>
<td>70</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>0.8</td>
<td>80</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>0.8</td>
<td>90</td>
<td>0.8</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Mesures de retard

- *Protection Long Retard*
 - Réduction de vitesse: 0.8 p.u.
 - Nominal: 50 kVA
 - Impédance: 0.8 p.u.
 - Durée: 0.5 s

- *Protection Instantanée*
 - Réduction de vitesse: 0.8 p.u.
 - Nominal: 50 kVA
 - Impédance: 0.8 p.u.
 - Durée: 0.5 s

Dossier Technique

Compact NS800 à 1600

Appareils fixes à commande manuelle

Appareils Fixes complets équipés des accordements Prise Avant (FPAV)

<table>
<thead>
<tr>
<th>Type</th>
<th>Kwh (kVAh)</th>
<th>Micrologic 2.0 sans accordement</th>
<th>Micrologic 2.0 avec accordement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact NS800 N</td>
<td>50</td>
<td>300</td>
<td>340</td>
</tr>
<tr>
<td>Compact NS800 H</td>
<td>50</td>
<td>310</td>
<td>340</td>
</tr>
<tr>
<td>Compact NS800 S</td>
<td>50</td>
<td>300</td>
<td>340</td>
</tr>
<tr>
<td>Compact NS800 T</td>
<td>50</td>
<td>300</td>
<td>340</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Kwh (kVAh)</th>
<th>Micrologic 4.0 sans accordement</th>
<th>Micrologic 4.0 avec accordement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact E2000 N</td>
<td>50</td>
<td>300</td>
<td>340</td>
</tr>
<tr>
<td>Compact E2000 H</td>
<td>50</td>
<td>310</td>
<td>340</td>
</tr>
<tr>
<td>Compact E2000 S</td>
<td>50</td>
<td>300</td>
<td>340</td>
</tr>
<tr>
<td>Compact E2000 T</td>
<td>50</td>
<td>300</td>
<td>340</td>
</tr>
</tbody>
</table>
Protection des transformateurs

La protection des transformateurs est réalisée avec les cellules interrupteur-fusibles de type PM, QM, QMB, QMC et APM.

Les fusibles associés à l'interrupteur, équipés d'un percuteur à énergie moyenne, peuvent être de plusieurs types :
- fusibles Soléfuse
- fusibles Fusarc
- fusibles d'autres constructeurs (nous consulter).

Pour chacun de ces fusibles, le tableau ci-dessous indique le calibre à adopter en fonction des caractéristiques principales du transformateur :
- puissance
- tension de service.

Choix des fusibles Soléfuse et Fusarc (calibre en A)

<table>
<thead>
<tr>
<th>type de fusible</th>
<th>puissance du transformateur (kVA)</th>
<th>tension assignée (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soléfuse</td>
<td>25</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>315</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>630</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>1250</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Fusarc

<table>
<thead>
<tr>
<th>tension de service (kV)</th>
<th>3.3</th>
<th>10</th>
<th>12.5</th>
<th>16</th>
<th>20</th>
<th>22.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>puissance du transformateur (A)</td>
<td>16</td>
<td>26</td>
<td>40</td>
<td>50</td>
<td>63</td>
<td>80</td>
</tr>
<tr>
<td>tension assignée (kV)</td>
<td>7.2</td>
<td>12</td>
<td>17.5</td>
<td>24</td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

Dimensions des fusibles

Fusibles Soléfuse (normes UTE)

<table>
<thead>
<tr>
<th>Ø55</th>
<th>450</th>
<th>Ø6</th>
</tr>
</thead>
</table>

Fusibles Fusarc (normes DIN)

<table>
<thead>
<tr>
<th>Ø45</th>
<th>450</th>
<th>Ø6</th>
</tr>
</thead>
</table>

Exemple

Soit à protéger un transformateur :
- puissance 400 kVA
- tension de service 10 kV.

On choisira :
- soit des fusibles Soléfuse calibrés à 43 A
- soit des fusibles Fusarc calibrés à 50 A.
Caractéristiques électriques

<table>
<thead>
<tr>
<th>Référence</th>
<th>Tension nominale (kV)</th>
<th>Tension de service (kV)</th>
<th>Courant nominal (A)</th>
<th>Courant min. de coupure Iₘ (A)</th>
<th>Courant max. de coupure Iₘ (kA)</th>
<th>Résistance à froid* avec percuteur (mΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>757328 BC</td>
<td>7,2</td>
<td>3,6/7,2</td>
<td>6,3</td>
<td>31,5</td>
<td>50</td>
<td>140,6</td>
</tr>
<tr>
<td>757328 BE</td>
<td></td>
<td></td>
<td>16</td>
<td>80</td>
<td>60</td>
<td>61,7</td>
</tr>
<tr>
<td>757328 BH</td>
<td></td>
<td></td>
<td>31,6</td>
<td>157,5</td>
<td>50</td>
<td>24,5</td>
</tr>
<tr>
<td>757328 BK</td>
<td></td>
<td></td>
<td>63</td>
<td>315</td>
<td>50</td>
<td>11,3</td>
</tr>
<tr>
<td>757328 BM</td>
<td></td>
<td></td>
<td>125</td>
<td>625</td>
<td>50</td>
<td>4,8</td>
</tr>
<tr>
<td>757328 CM</td>
<td></td>
<td>12/24</td>
<td>100</td>
<td>500</td>
<td>50</td>
<td>7,7</td>
</tr>
<tr>
<td>757328 CL</td>
<td>17,5</td>
<td>13,8/15</td>
<td>60</td>
<td>400</td>
<td>40</td>
<td>15,1</td>
</tr>
<tr>
<td>757328 EC</td>
<td></td>
<td></td>
<td>6,3</td>
<td>31,5</td>
<td>30</td>
<td>403,6</td>
</tr>
<tr>
<td>757328 EE</td>
<td></td>
<td></td>
<td>16</td>
<td>80</td>
<td>30</td>
<td>141,4</td>
</tr>
<tr>
<td>757328 EH</td>
<td></td>
<td>13,8/24</td>
<td>31,6</td>
<td>157,5</td>
<td>30</td>
<td>66,6</td>
</tr>
<tr>
<td>757328 EJ</td>
<td></td>
<td></td>
<td>43</td>
<td>215</td>
<td>30</td>
<td>38,5</td>
</tr>
<tr>
<td>757328 EK</td>
<td></td>
<td></td>
<td>63</td>
<td>315</td>
<td>30</td>
<td>18,9</td>
</tr>
<tr>
<td>757331 EC**</td>
<td></td>
<td></td>
<td>6,3</td>
<td>31,5</td>
<td>30</td>
<td>447,3</td>
</tr>
<tr>
<td>757331 EF**</td>
<td></td>
<td></td>
<td>16</td>
<td>80</td>
<td>30</td>
<td>147,4</td>
</tr>
<tr>
<td>757331 EH**</td>
<td></td>
<td></td>
<td>31,5</td>
<td>157,5</td>
<td>30</td>
<td>67,9</td>
</tr>
<tr>
<td>757331 EJ**</td>
<td></td>
<td></td>
<td>43</td>
<td>215</td>
<td>30</td>
<td>39</td>
</tr>
<tr>
<td>757331 EK**</td>
<td></td>
<td></td>
<td>63</td>
<td>315</td>
<td>30</td>
<td>19,3</td>
</tr>
<tr>
<td>757328 FC</td>
<td></td>
<td></td>
<td>6,3</td>
<td>31,5</td>
<td>20</td>
<td>564</td>
</tr>
<tr>
<td>757328 FD</td>
<td></td>
<td></td>
<td>10</td>
<td>50</td>
<td>20</td>
<td>252,9</td>
</tr>
<tr>
<td>757328 FE</td>
<td></td>
<td></td>
<td>16</td>
<td>80</td>
<td>20</td>
<td>207,9</td>
</tr>
<tr>
<td>757328 FF</td>
<td></td>
<td></td>
<td>20</td>
<td>100</td>
<td>20</td>
<td>133,2</td>
</tr>
<tr>
<td>757328 FG</td>
<td></td>
<td></td>
<td>25</td>
<td>125</td>
<td>20</td>
<td>124</td>
</tr>
<tr>
<td>757328 FH</td>
<td></td>
<td></td>
<td>31,6</td>
<td>157,5</td>
<td>20</td>
<td>53</td>
</tr>
</tbody>
</table>

*Les résistances sont données à ± 10 % pour une température de 20 °C.

**Les fusibles dont la référence commence par 757328 possèdent un percuteur. Ce n'est pas le cas pour les autres.

Courbes caractéristiques temps-courant 7,2 - 12 - 17,5 - 24 - 36 kV

Temps

Intensité (A)

Dossier Technique

DT 12/52
Choix du calibre des fusibles pour transformateur de distribution

* Conditions à respecter

1) L’enveloppe minimale de la caractéristique temps/courant du fusible à choisir doit passer à droite du point A définissant le courant à la mise sous tension du transformateur.

* Le point A est défini par l’intersection de l’horizontale 0,1 s et de la verticale correspondant à 12 fois l’intensité nominale du transformateur.

* L’horizontale 0,1 s coupe la caractéristique temps/courant nominale du fusible choisi en un point C dont l’abscisse nous donne l’intensité I(C).

Première condition :
0,8 \times 1(C) > I(A).

2) Le courant côté HTA lorsque le transformateur est en court circuit triphasé côté BT, doit être supérieur au courant minimal de coupure 13.

\[I_{tr} \times \frac{100}{U_{cc}} \geq 13 \text{ minima fusib} \]

2) Pour éviter tout vieillissement le calibre du fusible choisi doit être égal au moins à 1,3 I du transformateur si aucune surcharge n’est prévue et à 1,5 I surcharge en cas contraire.

Exemple : Transformateur triphasé puissance assignée
Sn = 1000 kVA, Surcharge prévue 10% - Température ambiante fusible < 40°C.

Tension primaire U1 = 20 kV - Ucc = 5%
1 Nominal transformateur = 1000

Point A :

I enclenchement = 12 I nominal transf : 12 \times 28,8 = 345,6 A

\[1,0 \times 1(C) > I(A) \]

\[0,8 \times 1(C) > I(A) \]

2ème condition :

Dans ce cas la valeur du courant 13 est 5 x 50 A = 250 A

\[28,8 \times \frac{100}{5} > 250 A \]

\[576 A > 250 A \]

\[3 \text{ème condition : } \]

43 A > 1,3 I surcharge

43 A > 1,3 x 1,1 x 28,9 (=41,1 A)

Le calibre 50 A choisi respecte les 3 conditions énoncées ci-dessus.

Symboles des dispositifs de verrouillage utilisés dans les schémas de distribution

Différentes représentations graphiques sont faites des mécanismes de verrouillage ; certaines représentations reprennent l’état de la serrure pêne rentré ou sorti) et de la clé (libre ou prisonnière).

Des schémas symboliques de principe sont également utilisés mais, par principe, les séquences complexes doivent être explicitées.

Symboles fonctionnels

- Verrouillage mécanique
- Ensemble mécanisme serrure
- Clé prisonnière
- Clé libre
- Manœuvre de la clé - Introduction - Extrication
- Serrure sur porte
- Clé série-bière
3. Protèges d'un poste de livraison MT

En France, la protection interne des transformateurs a un rôle total est des fins de l'mer ONERA (Dispositif de Manoeuvre ou LEDA) et de la Société de l'Electricité (arbre) sur le transformateur. Le calcul de l'erreur de température interne est basé sur le coefficient de température de la membrane et du transformateur. La protection contre les défauts internes doit prévoir l'ouverture de la protection sur le transformateur.

D'autre part, la norme CB / NF EN 60076-1 définit les types de risques et définit la classification des transformateurs avec les jeux de l'CE des transformateurs et des machines à haute tension (cf. Fig. B11). Les transformateurs sont caractérisés par leur fonction de protection dans l'immédiat et de grande puissance.

Type de risque
- D: Fusible
- E: Transfert
- F: Glissent

Classe d'excès
- F: Fusible
- E: Transfert
- D: Glissant

Fig. B11: Classification de risques pour les transformateurs en service.

Défaut interne entre phases
- Fonctionnement interne doit être détecté et éliminé par:
 - Fusible ou de l'ouverture de l'interconnexion en fonction du transformateur (cf. Fig. B11).

Défaut interne à la terre
- C'est le type de défaut interne le plus commun, il doit être détecté par un relais de déclenchement du disjoncteur en fonction du transformateur (cf. Fig. B11).

Protection des circuits aval
La protection des circuits en aval du transformateur doit être conforme à la réglementation des installations électriques à haute tension (normes CEI 60094 et réglementations nationales). En France, les protections de distribution en aval des transformateurs HTA doivent être conformes à la norme NF C 15-100.

Sélectivité des dispositifs de protection en amont et en aval du transformateur
Le poste de livraison MT et compteur ST nécessite une électrisation entre le transformateur et le disjoncteur. Le tableau des fusibles sera détaillé dans les caractéristiques du transformateur MT/ST.

Les caractéristiques du disjoncteur ST doivent être telles que:
- Pour une cour de surcharge ou cour-circuit en aval du point où les incidents ne sont pas déclenchés suffisamment pour garantir que:
 - Les fusibles ou le disjoncteur ST ne sont pas déclenchés.

Les caractéristiques de cette coupe du tableau de protection du disjoncteur ST dans ce cas les courants et les déclenchements inverses (avec une durée de déclenchement après le seuil de déclenchement inversé).
Accessoires et auxiliaires

Impédance de limitation ZX
- Permet de créer un réseau à neutre impédant.
- Reste connectée pendant la recherche à 2,5 Hz :
 - 1 500 Ω à 50 Hz
 - 1 Ω à 2,5 Hz
 - U ≤ 500 V.

Limiteur de surtension Cardew C
- Sur réseau BT à neutre isolé ou impédant.
- Branched au secondaire du transformateur MT/BL, il permet l'écoulement à la terre des charges dues aux surtensions.
- Supporte le courant de court-circuit du transformateur.
- Son fonctionnement provoque la signalisation continue du CPL.
- U de non-aimorçage à 50 Hz ≤ 1,6 x U = type "A".
- U d'aimorçage initial à 50 Hz ≤ 2,5 x U = type "B" (3 x U = type "C" pour 220 V).
- I max en arrêt amproge : 40 kA/0,2 s.
- NF C 63-150, NF C 15-100.

Point neutre selfique S3
- Permet la création d'un point neutre artificiel pour le contrôle de l'isolement, disjoncteur général ouvert.
 - U ≤ 380 V.

Platine additionnelle PHT1000
- Permet d'utiliser les CPL XM300C et XML308/316 sur des réseaux :
 - 440 V CA ≤ U ≤ 1000 V CA, neutre non accessible
 - 760 V CA ≤ U ≤ 1700 V CA, neutre accessible
 - 600 V CC ≤ U ≤ 1200 V CC, réseau continu.

Platine P1
- Permet de raccorder un TR22A sur des réseaux > 440 V CA :
 - 440 V CA ≤ U < 1000 V CA, neutre non accessible
 - 760 V CA ≤ U < 1700 V CA, neutre accessible.

Choix des auxiliaires
L'installation du Vigilom nécessite un certain nombre d'accessoires obligatoires.
D'autres accessoires facultatifs peuvent compléter l'installation :
- auxiliaire obligatoire
- auxiliaire facultatif.

Vigilom

<table>
<thead>
<tr>
<th>XM302C</th>
<th>XM306C</th>
<th>XML308</th>
<th>XML316</th>
<th>U = 760 VCA (4)</th>
<th>U = 440 VCA (6)</th>
<th>U = 500 VCC (9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>760 à 1730 VCA (4)</td>
<td>440 à 1730 VCA (6)</td>
<td>500 à 1000 VCA (9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cardew C</th>
<th>Cardew C 2400 V (1)au</th>
<th>Cardew C 3000 V (1)au</th>
<th>Cardew C 4500 V (1)au</th>
<th>Cardew C 10000 V (1)</th>
<th>Cardew C 5000 V (1)au</th>
<th>Cardew C 6000 V (1)au</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardew C 2500 V (1)au</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardew C 3400 V (1)au</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardew C 4600 V (1)au</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardew C 5500 V (1)au</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardew C 6000 V (1)au</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardew C 7500 V (1)au</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardew C 8200 V (1)au</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardew C 9500 V (1)au</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardew C 10000 V (1)au</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impédance de limitation ZX
- 33 k ≤ 380 V
- 83 k ≤ 380 V

Vigilom additionnels
- PHT 1000
- sauf XM300

1) Neutre accessible.
2) Neutre non accessible.
3) Neutre à tension continue.
4) Neutre sur carte péritel.
5) Neutre sur carte péritel.
6) Neutre sur carte péritel.
7) Neutre sur carte péritel.
8) Neutre sur carte péritel.
9) Neutre sur carte péritel.
10) Neutre sur carte péritel.

Distribution électrique basse tension et KTA - 2009

Dossier Technique DT 15 / 52
Contrôleur permanent d'isolement
Vigilohm
TR22A

1. réseau à contrôler. / mains monitored.
- neutre accessible. / available neutral.
- neutre non accessible. / unavailable neutral.

2. identification de l'appareil. / device identification.
- face avant. / front panel.
- étiquette latérale. / side label.
- légende. / key to symbols.
- températures. / temperatures.
- fonctionnement. / operation.
- stockage. / storage.

Continuous insulation monitor
Vigilohm
TR22A

Utilisation platine S3. / S3 plate use.
U ≤ 380 V AC.

1519720-D
10-2006
FACTURE SUR RELEVE

N°09307 00613 66 DU 04/11/09

Votre service local:
EDF ENTREPRISES GRANDS CLIENTS
BP 53670
44328 NANTES CEDEX 03

Tél. : 0820 51 46 05
Tél. département : 0 810 533 029

(CODE CLASSEMENT) 68
MONTRANT PRELEVE LE

5. 286.57E 19/11/09.

FACTURE N° 093013 66 DU 04/11/2009

RELEVE DE VOS CONSOMMATIONS DU 01/10/09 AU 01/11/09

PUISANCE CONTROLEE PAR COMPTEUR ÉLECTRONIQUE

<table>
<thead>
<tr>
<th>Type</th>
<th>Valeur</th>
<th>Unité</th>
<th>Pans</th>
<th>Valeur</th>
<th>Unité</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>3.00</td>
<td>KW</td>
<td>0.00</td>
<td>1.0000</td>
<td>0.00</td>
</tr>
<tr>
<td>HC</td>
<td>521.00</td>
<td>KW</td>
<td>0.00</td>
<td>1.0000</td>
<td>0.00</td>
</tr>
<tr>
<td>R</td>
<td>572.00</td>
<td>KW</td>
<td>0.00</td>
<td>1.0000</td>
<td>0.00</td>
</tr>
<tr>
<td>R</td>
<td>521.00</td>
<td>KW</td>
<td>0.00</td>
<td>1.0000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

NUMERIQUE

<table>
<thead>
<tr>
<th>Nom</th>
<th>Valeur</th>
<th>Unité</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>146 56</td>
<td></td>
</tr>
<tr>
<td>HC</td>
<td>5960</td>
<td>PERCHNES</td>
</tr>
</tbody>
</table>

TARIF VERT AB EDF SEULS STANDARD ZI: OUEST MOYENNES UTILISATIONS

<table>
<thead>
<tr>
<th>PRIME FIXE</th>
<th>REDEVANCES ET PRIX DIVERS</th>
<th>NOMURANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>417.21</td>
<td>14.21</td>
<td>00</td>
</tr>
<tr>
<td>90.07</td>
<td>561.93</td>
<td>126.15</td>
</tr>
</tbody>
</table>

ENVIRONMENT ACTIVE

<table>
<thead>
<tr>
<th>COMPTEURS</th>
<th>MONOPHASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Nom</td>
</tr>
<tr>
<td>Phase</td>
<td>Phase</td>
</tr>
<tr>
<td>1er compteur</td>
<td>2ème compteur</td>
</tr>
<tr>
<td>3ème compteur</td>
<td>4ème compteur</td>
</tr>
</tbody>
</table>

ENERGIE REACTIVE

<table>
<thead>
<tr>
<th>MINORATION</th>
<th>0.18%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Général hors taxe</td>
<td>4232.32</td>
</tr>
</tbody>
</table>

TVA PAYEE SUR LES DEBITS : 19.60% SUR

| 4933.32E | 853.25 |

MONTANT PRELEVE EN EUROS

| 5206.57 |

AUCUN ESCompte N'EST ACCORDE POUR Paiment ANTICIPEx

| (TTC) 1.91% | COUT ACHERENEMENT ESTIME A | 18.00 69 E HT |

ORIGINE 2008 DE L'ÉLECTRICITÉ : 82.9% NUCLEAIRE 9.2% RENOUVELABLES IDONE 7.7% HYDRAULIQUE 5.1% CHARBON 0.2% SOLAIRE 0.2% AUTRES INDIQUEURS D'IMPACT ENVIRONMENTAL SUR WWW.EDF.FR HTTP://EHAPST/EDF/FR JEUX DONNEZ NOUS VOS DONNÉES DE FACTURATION DANS L'AUTRE ESPACE SUR LES SITES EDPE ENTREPRISES.FR OU HTTP://COLLECTIVITES.EDF.FR RETAIL DE PASEMENT Taux d'INTERET ANNUEL 5.99% AVEC UN MINIMUM DE PERCEPTION DE 55.00 EUROS.
CARACTÉRISTIQUES TARIFICATION EDF

Le tarif vert comporte :
- Deux options : base et EJP
- Plusieurs versions territoriales suivant la durée d'utilisation :
 - 4 options base : utilisation courte, moyenne, longue et très longue.
 - 2 en option EJP selon la durée d'utilisation moyenne ou très longue.

UTILISATION
Industrie et territoire important

Résumé des principaux éléments de la tarification EDF

<table>
<thead>
<tr>
<th>réseau</th>
<th>tarif</th>
<th>versions territoriales et options</th>
<th>utilisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT</td>
<td>3 kVA < P < 36 kVA</td>
<td>4 options : sangle, brancheurs, EJP, TEMPO</td>
<td>logement, locaux agricoles, professionnels, commerciaux</td>
</tr>
<tr>
<td></td>
<td>3 à 8 kVA monophasé ou 6 à 26 kVA triphasé</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT</td>
<td>36 kVA < P < 250 kVA (1)</td>
<td>3 options : option base, option EJP, option triphasé</td>
<td>petits, moyens, entreprises</td>
</tr>
<tr>
<td></td>
<td>tarif jaune</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT</td>
<td>36 à 250 kVA triphasé (1)</td>
<td>2 options : utilisations courtes, utilisations moyennes</td>
<td></td>
</tr>
<tr>
<td>branchement BT</td>
<td>36 à 250 kVA triphasé (1)</td>
<td>2 options : utilisations courtes, utilisations moyennes</td>
<td></td>
</tr>
<tr>
<td>BT ou HT</td>
<td>P > 250 kVA (2)</td>
<td>4 options : utilisations courtes, utilisations moyennes, utilisations longues, utilisations très longues</td>
<td>industrielle</td>
</tr>
<tr>
<td>branchement BT</td>
<td>36 à 250 kVA triphasé (1)</td>
<td>2 options : utilisations courtes, utilisations moyennes</td>
<td></td>
</tr>
</tbody>
</table>

(1) La limite inférieure de 36 kVA n'est pas imposée dans le cas de la tranche tarifaire la plus courte.
(2) La limite inférieure de 250 kVA n'est pas imposée dans le cas de la tranche tarifaire la plus courte, sauf si le client a demandé un raccordement à un point de raccordement distant de plus de 300 mètres.
(3) Lors de la demande d'installation d'une nouvelle ligne, il est possible de demander une installation étendue à plus de 300 mètres.

TARIF VERT A8 - OPTION BASE

<table>
<thead>
<tr>
<th>Version</th>
<th>Prise fixe mensuelle e/€/mois</th>
<th>Hôtes et Demi-Hôtes</th>
<th>EJP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELU</td>
<td>203.12</td>
<td>7,143</td>
<td>4,376</td>
</tr>
<tr>
<td>LU</td>
<td>92.95</td>
<td>7,143</td>
<td>4,376</td>
</tr>
<tr>
<td>NLU</td>
<td>42.24</td>
<td>7,143</td>
<td>4,376</td>
</tr>
<tr>
<td>CU</td>
<td>19.20</td>
<td>7,143</td>
<td>4,376</td>
</tr>
</tbody>
</table>

Energie-électrique (€/kWh)

<table>
<thead>
<tr>
<th>Version</th>
<th>Energie-électrique e/€/kWh</th>
<th>EJP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELU</td>
<td>0,65</td>
<td>0,27</td>
</tr>
<tr>
<td>LU</td>
<td>0,65</td>
<td>0,27</td>
</tr>
<tr>
<td>NLU</td>
<td>0,65</td>
<td>0,27</td>
</tr>
<tr>
<td>CU</td>
<td>0,65</td>
<td>0,27</td>
</tr>
</tbody>
</table>

TARIF VERT A8 - OPTION EJP

<table>
<thead>
<tr>
<th>Version</th>
<th>Prise fixe mensuelle e/€/mois</th>
<th>Hôtes et Demi-Hôtes</th>
<th>EJP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELU</td>
<td>203.12</td>
<td>7,143</td>
<td>4,376</td>
</tr>
<tr>
<td>LU</td>
<td>92.95</td>
<td>7,143</td>
<td>4,376</td>
</tr>
<tr>
<td>NLU</td>
<td>42.24</td>
<td>7,143</td>
<td>4,376</td>
</tr>
<tr>
<td>CU</td>
<td>19.20</td>
<td>7,143</td>
<td>4,376</td>
</tr>
</tbody>
</table>

Énergie-électrique (€/kWh)

<table>
<thead>
<tr>
<th>Version</th>
<th>Énergie-électrique e/€/kWh</th>
<th>EJP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELU</td>
<td>0,65</td>
<td>0,27</td>
</tr>
<tr>
<td>LU</td>
<td>0,65</td>
<td>0,27</td>
</tr>
<tr>
<td>NLU</td>
<td>0,65</td>
<td>0,27</td>
</tr>
<tr>
<td>CU</td>
<td>0,65</td>
<td>0,27</td>
</tr>
</tbody>
</table>

Hôtes :
- de plus de 4 ans inclus
Demi-Hôtes :
- couverture à main
EJP :
- couverture à main
Dispositions :
- 12 mois de délai de déclaration à l'exploitant
Hôtes
- de plus de 4 ans inclus
Demi-Hôtes :
- couverture à main
EJP :
- couverture à main
Dispositions :
- 12 mois de délai de déclaration à l'exploitant

Dossier Technique

DT 18 / 52
Article I. Versions tarifaires

Le client peut choisir l'une des versions tarifaires en fonction du nombre d'heures t de consommation de l'énergie.

- Courte Utilisation (CU) $t \leq 2000$ heures
- Moyenne Utilisation (MU) $2000 \leq t \leq 3500$ heures
- Longue Utilisation (LU) $3500 \leq t \leq 6300$ heures
- Très Longue Utilisation (TLU) $t \geq 6300$ heures

Ces versions sont définies par des prix unitaires de puissance et des coefficients affectant les puissances souscrites dans les différentes périodes tarifaires. Le client peut modifier son choix entre les versions tarifaires à chaque anniversaire du contrat.

La version tarifaire choisie, les coefficients associés, notamment les coefficients de puissance réduite sont présentés ci-après.

Article II. Puissances souscrites

1) *Puissance maximale souscrite*

La puissance maximale souscrite par le client est fixée aux conditions particulières. Elle pourra évoluer au cours de l'exécution du contrat suivant les règles définies au paragraphe 4.

2) *Puissances souscrites dans les différentes périodes tarifaires*

Le client s'engage à limiter pour chaque période tarifaire, la puissance appelée par son installation aux valeurs indiquées aux conditions particulières. Ces valeurs doivent être telles qu'une puissance de rang quelconque ne soit pas inférieure à la puissance du rang précédent et que leur écart éventuel ne soit pas inférieur à 20 KW et 5% de la puissance de rang suivant.

3) *Dépassement des puissances souscrites :*

Le dépassement est la puissance non souscrite appelée à titre exceptionnel par le client, au cours d'un mois, en excédent de la puissance souscrite. EDF n'est pas tenu de faire face aux appels de puissance qui dépasseraient la puissance souscrite.

4) *Modification des puissances souscrites :*

La puissance maximale et les puissances de chaque période tarifaire sont normalement souscrites par le client pour une durée de 3 ans. Le client peut toutefois souscrire un engagement de 6 ans en contrepartie duquel il bénéficie d'un rabais de 4% sur la prime fixe.
Les puissances souscrites pourront être augmentées par avenant, pendant la durée du contrat, par tranche d'au moins 5% et 20 KW de la puissance concernée.

Article III. Prix de la fourniture

1) *Facturation de la puissance*

Il sera retenu pour la facturation de la fourniture une puissance dite « puissance réduite Pr » déterminée par la formule suivante :

$$Pr = K_1P_1 + K_2(P_2-P_1) + K_3(P_3-P_2) + K_4(P_4-P_3) + K_5(P_5-P_1).$$

P_1, P_2, P_3, P_4, P_5 étant des puissances souscrites dans les différentes périodes tarifaires de rang 1, 2, 3, 4, 5,

K_1, K_2, K_3, K_4, K_5 étant des coefficients de puissance réduite de la version tarifaire choisie, associés aux périodes tarifaires de rang 1, 2, 3, 4, 5

Ces coefficients ont pour fonction de valoriser les effacements de puissance souscrits.

La puissance réduite donnera lieu à perception d'une prime fixe annuelle aux taux de base par KW indiqué aux conditions particulières, facturée par douzième au début du mois de la fourniture.

La puissance souscrite est la puissance réduite minorée de 4% lorsqu'on choisi un contrat de 6 ans.

2) *Facturation des dépassements éventuels des puissances souscrites*

Le contrôle de la puissance est assuré par un appareil de mesure de puissance à période d'intégration de 10 minutes selon les dispositions figurant aux conditions particulières.

Les montants dus au titre des dépassements sont facturés mensuellement. Ils correspondent à la somme des montants afférents à chaque période tarifaire de mois considéré. Le montant du au titre du dépassement pour une période tarifaire donnée sera le produit de la racine carrée de la somme des carrés des dépassements constatés sur cette période, exprimé en KW, par le prix unitaire du dépassement.

Pour chaque période tarifaire et horaire correspond un prix du KW.