Quantum-safe Cryptography

Ludovic Perret J.-C. Faugère

Ludovic.perrel@lip6.fr

jean-charles.faugere@inria.fr

European Brokerage Event Paris, September 2016

UPMC Sorbonne Universités INRIA Paris CNRS

Mollialion

- public-key cryptography = hard mathematical problems
 - o Dlog, Factorisation

SHOR'S ALGORITHM

Quantum-Safe (aka post-quantum) Cryptography Established Academic Topic

© Cryptographic primitives secure against classical and quantum computers.

Springer

Quantum-Safe Cryptography Established EU Topic

NESSIE New European Schemes for Signature, Integrity and Encryption

e Cryptographic primitives secure against classical and quantum computers.

auantum-safe Blow-Up

NIST announcemes

NIST Standardization Process Timeline

September 16, 2016	Feedback on call for proposals
Fall 2016	Formal Call for Proposals
Nov. 2017	Deadline for submissions
Early 2018	Workshop - Submitter's Presentations
3-5 years	Analysis Phase + 1-2 workshops
2 years later	Draft standards ready

Key-exchange, signature, pk encryption NISTIR 8105

Report on Post-Quantum Cryptography

Lily Chen Stephen Jordan Yi-Kai Liu Dustin Moody Rene Peralta Ray Perlner Daniel Smith-Tone

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.IR.8105

Quantum-Safe Cryptography Industry Specification Group ETSI

- @ Chairman. Mark Pecen (ISARA Corporation, Waterloo, Canada)
- Assess and make recommendations for quantum-safe cryptographic primitives
- @ Quantum-Safe-Crypto Workshops (4th, Toronto, September)

Quantum-safe Security Working Group Cloud Security Alliance

- © Chairs. Bruno Huttner (ID Quantique) and Jane Melia (QuintessenceLabs)
 - « What is Post- Quantum
 Cryptography », « What is
 Quantum-Safe Security? », « What
 is Quantum-Key Distribution? »

Not Only an Academic Topic

TOSHIBALeading Innovation >>>

Quantum-safe Landscape

Code-based

Multivariate-based

Lattice-based

QSC)

Hash-based

Guantum-key distribution Isogeny-based

Next

Multivariate Public-Cryptography

Non linear polynomials $p_1, \ldots, p_m \in \mathbb{F}_q[x_1, \ldots, x_n]$

Question Find – if any – $(z_1, \ldots, z_n) \in \mathbb{F}_q^n$

$$\begin{cases} p_1(z_1, \dots, z_n) = 0 \\ \vdots \\ p_m(z_1, \dots, z_n) = 0 \end{cases}$$

- o Posso is NP-Hard [Garey-Johnson]
- « Random instances » of Posso are hard to solve in practice
- o No (known) exponential quantum speedup

MISC à 23:34:52

Test de HFEBOOST

Many Challenges in Quantum-Safe

Quantum-Safe standards will be released

Classical and quantum cryptanalysis Combining physical techniques and algorithmic techniques

Finding good parameters

Efficient and secure implementations Is secret-key cryptography really quantum-safe