

General information

List, a CEA Tech Institute

Florent Kirchner (florent.kirchner@cea.fr) – Software Security Alexis Olivereau (alexis.olivereau@cea.fr) – Network Security

Area of interest	Choose Y or N
• Functional encryption and reduction of leakage (e.g., anonymization or obfuscation)	Y
 Ultra-lightweight cryptology and ultra-high-speed cryptographic algorithms including q cryptography 	Juantum
 Physical cryptanalysis, including tampering, side channel, faults injection attacks, and for good software implementation and validation practices 	security of tools
 Authenticated encrypted token research for mobile payment solution 	
 Innovative cryptographic primitives and complementary non-cryptographic privacy-pre mechanisms to enforce privacy. 	eserving
New techniques, such as quantum asfe en integraphy, which are easure from quantum	
O New techniques, such as quantum sale cryptography, which are secure non-quantum	
 Quantum key distribution 	
Automated proof techniques for cryptographic protocols	Y

Competencies

- Organization competencies
 - RIA <u>leadership</u> and membership, CSA membership
 - active members of ENISA's NIS WG3, PPP Agenda, Allistene, ACN, IETF
- 10+ years of European project experience:
 - OPEN TC (FP6): formal verification of Trusted Computing components
 - STANCE (FP7): formal code analysis for cybersecurity
 - RISC (H2020): models for the convergence of physical and cybersecurity
 - **VESSEDIA** (H2020): verification engineering for dynamic industrial systems
 - CHEKOFV (DARPA): gamifying and crowd-sourcing formal verification
 - TWISNet (FP7), IoT-A (FP7), etc. : Lightweight network security for the IoT
 - and also eConfidential, OPEES, MBAT, IngoPCS, Anastasec, Aurochs, ...
- What we can bring
 - Formal verification and validation techniques
 - Source and binary code analysis, Runtime monitoring
 - Applied to cryptographic primitives and middleware
 - As a refinement of higher-level verifications (e.g. Coq, Isabelle, Easycrypt)
 - Applied cryptographic primitives (ABE, proxy re-encryption, signcryption...)
 - Lightweight crypto-based security protocols (secure delegation, pre-computation...)
 - Quantum safe cryptography
 - Privacy-preserving approaches (anonymization, pseudonymity...)

- Describe your project idea
- List of the complementary skills you need for your consortium