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Introduction

Models of protocols

Two models of security protocols:
@ Symbolic model (Dolev-Yao):

e Primitives are black boxes. encrypt
o Messages are terms on these primitives. encrypt(Hello, k)
e The adversary is restricted to apply only those primitives.

This model facilitates the automation of proofs.

o Computational model:

o Messages are bitstrings. 01100100
e Primitives are functions on bitstrings. encrypt(011,100100) = 111
e The adversary is any (probabilistic polynomial-time) Turing machine.

This model is more realistic: the adversary can apply any algorithm.
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Symbolic Model

Protocol verification in the symbolic model

Security protocols are infinite state:
@ The attacker can create messages of unbounded size.
@ Unbounded number of sessions of the protocol.
Solutions:
@ Bound the state space arbitrarily:
exhaustive exploration (model-checking, ...);
find attacks but not prove security.

@ Bound the number of sessions:
the insecurity is NP-complete (with reasonable assumptions).

@ Unbounded case:
the problem is undecidable.
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Symbolic Model

Solutions to undecidability

To solve an undecidable problem, we can
@ Use approximations, abstraction.
@ Terminate on a restricted class.
@ Rely on user interaction or annotations.

In ProVerif, we do the first two, using a very precise abstraction by Horn
clauses.
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Symbolic Model

Features of ProVerif

o Fully automatic.
@ Works for unbounded number of sessions and message space.

@ Handles a wide range of cryptographic primitives, defined by rewrite
rules or equations.

@ Handles various security properties: secrecy, authentication, some
equivalences.

o Limitations:

e Does not always terminate. However, efficient in practice:
small examples verified in less than 0.1 s; complex ones in minutes.
o May answer “| don't know” (false attack). However, very precise in
practice: no false attack in our tests for secrecy and authentication.
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Symbolic Model

Protocol: Properties to prove:
Pi calculus 4 cryptography Secrecy, authentication,
Primitives: rewrite rules, equations | process equivalences

[ Automatic translator ]

‘Horn clauses Derivability queries ‘
[ Resolution with selection ]
Non-derivable: the property is true Derivation

Attack: the property is false False attack: | don't know
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Symbolic Model

The Horn clause representation

The main predicate:

attacker(M) means ‘“the attacker may have M".

Thanks to this predicate, we can model actions of the adversary:

Example: Shared-key encryption and decryption

attacker(m) A attacker(k) — attacker(encrypt(m, k))
attacker(encrypt(m, k)) A attacker(k) — attacker(m)

and of the protocol participants:

Example: A receives M and replies with M’
attacker(M) — attacker(M')
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Computational Model

CryptoVerif

The protocol verifier CryptoVerif:
@ works directly in the computational model.
@ proves secrecy and correspondence (authentication) properties.

@ provides a generic method for specifying properties of
cryptographic primitives which handles
MACs (message authentication codes), symmetric encryption,
public-key encryption, signatures, hash functions,
Diffie-Hellman key agreements, ...

@ works for N sessions (polynomial in the security parameter).
@ gives a bound on the probability of an attack (exact security).

@ has automatic and manual modes.
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Computational Model

Produced proofs

As in Shoup's and Bellare&Rogaway's method, the proof is a sequence of
games:

@ The first game is the real protocol.

@ One goes from one game to the next by syntactic transformations or
by applying the definition of security of a cryptographic primitive.
The difference of probability between consecutive games is negligible.

@ The last game is “ideal”: the security property is obvious from the
form of the game.

(The advantage of the adversary is usually 0 for this game.)

— — —
Protocol P1 P2 T Pn Property
to prove [negligible negligible negligible opvious
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Implementations

Models vs. implementations

@ ProVerif and CryptoVerif automatically analyze protocol models.
@ Just that models are very abstract:

o Protocol models may miss implementation attacks.
@ Verified models are good

@ ...but verified implementations are much better!
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Implementations

Generation of implementations (David Cadé)

CryptoVerif - Proof in the compu-
. CryptoVerif
specification tational model
|

Our Compiler

| Protocol Code| | Network Code

\
[OCamI Compiler]

l

| Implementation |

Caption:
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Implementations

Verified implementations with F*,
https://www.fstar-lang.org/

e F* is a new programming language
@ ... putting together:
e impure functional programming in ML
o extracts to OCaml and F#, interoperates
e the automation of SMT-based verification systems
o like in Why3, Frama-C, Boogie, VCC, Dafny
o the expressive power of interactive proof assistants based on dependent
types
o like in Coq, Agda, or Lean
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Implementations

miTLS, http://www.mitls.org/

e Formally verified reference implementation of TLS 1.2 in F7/F*
(working towards TLS 1.3)

@ Written from scratch focusing on verification

. miTLS - Home x

€« C' [ https://www.mitls.org:2443 /wsgi/home X

Home Publications Download Browse TLS Attacks People

M miTLS

T L' < A verified reference TLS implementation

This page is served using the miTLS demo HTTPS server. (Go back to production server)
« ciphersuite: TLS_RSA_WITH_AES_128_CBC_SHA,
« compression: NullCompression,
« version: TLS_1p2
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Implementations

Lead to the discovery of many attacks in TLS
implementations
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Conclusion

Conclusion

Verified security protocols at several levels:
@ Specifications:
e In the symbolic model: ProVerif
Available at http://proverif.inria.fr/
e In the computational model: CryptoVerif
Available at http://cryptoverif.inria.fr/
@ Implementations:
o Generation of implementations from specifications: CryptoVerif
e Direct verification of implementations: F*.
Available at https://www.fstar-lang.org/

See http://prosecco.inria.fr/
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