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Models of protocols

Two models of security protocols:

Symbolic model (Dolev-Yao):

Primitives are black boxes. encrypt
Messages are terms on these primitives. encrypt(Hello, k)
The adversary is restricted to apply only those primitives.

This model facilitates the automation of proofs.

Computational model:

Messages are bitstrings. 01100100
Primitives are functions on bitstrings. encrypt(011, 100100) = 111
The adversary is any (probabilistic polynomial-time) Turing machine.

This model is more realistic: the adversary can apply any algorithm.
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Models of protocols

Two models of security protocols:

Symbolic model (Dolev-Yao): ProVerif

Primitives are black boxes. encrypt
Messages are terms on these primitives. encrypt(Hello, k)
The adversary is restricted to apply only those primitives.

This model facilitates the automation of proofs.

Computational model: CryptoVerif

Messages are bitstrings. 01100100
Primitives are functions on bitstrings. encrypt(011, 100100) = 111
The adversary is any (probabilistic polynomial-time) Turing machine.

This model is more realistic: the adversary can apply any algorithm.
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Protocol verification in the symbolic model

Security protocols are infinite state:

The attacker can create messages of unbounded size.

Unbounded number of sessions of the protocol.

Solutions:

Bound the state space arbitrarily:
exhaustive exploration (model-checking, . . . );
find attacks but not prove security.

Bound the number of sessions:
the insecurity is NP-complete (with reasonable assumptions).

Unbounded case:
the problem is undecidable.
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Solutions to undecidability

To solve an undecidable problem, we can

Use approximations, abstraction.

Terminate on a restricted class.

Rely on user interaction or annotations.

In ProVerif, we do the first two, using a very precise abstraction by Horn
clauses.
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Features of ProVerif

Fully automatic.

Works for unbounded number of sessions and message space.

Handles a wide range of cryptographic primitives, defined by rewrite
rules or equations.

Handles various security properties: secrecy, authentication, some
equivalences.

Limitations:

Does not always terminate. However, efficient in practice:
small examples verified in less than 0.1 s; complex ones in minutes.
May answer “I don’t know” (false attack). However, very precise in
practice: no false attack in our tests for secrecy and authentication.
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ProVerif

Horn clauses

Resolution with selection

Non-derivable: the property is true Derivation

Derivability queries

Automatic translator

Protocol:
Pi calculus + cryptography

Properties to prove:
Secrecy, authentication,
process equivalencesPrimitives: rewrite rules, equations

Attack: the property is false False attack: I don’t know
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The Horn clause representation

The main predicate:

attacker(M) means “the attacker may have M”.

Thanks to this predicate, we can model actions of the adversary:

Example: Shared-key encryption and decryption

attacker(m) ∧ attacker(k)→ attacker(encrypt(m, k))
attacker(encrypt(m, k)) ∧ attacker(k)→ attacker(m)

and of the protocol participants:

Example: A receives M and replies with M ′

attacker(M)→ attacker(M ′)
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CryptoVerif

The protocol verifier CryptoVerif:

works directly in the computational model.

proves secrecy and correspondence (authentication) properties.

provides a generic method for specifying properties of
cryptographic primitives which handles
MACs (message authentication codes), symmetric encryption,
public-key encryption, signatures, hash functions,
Diffie-Hellman key agreements, . . .

works for N sessions (polynomial in the security parameter).

gives a bound on the probability of an attack (exact security).

has automatic and manual modes.
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Produced proofs

As in Shoup’s and Bellare&Rogaway’s method, the proof is a sequence of
games:

The first game is the real protocol.

One goes from one game to the next by syntactic transformations or
by applying the definition of security of a cryptographic primitive.
The difference of probability between consecutive games is negligible.

The last game is “ideal”: the security property is obvious from the
form of the game.
(The advantage of the adversary is usually 0 for this game.)

Game 0

Protocol
to prove

←→
p1

negligible

Game 1 ←→
p2

negligible

. . .
←→
pn

negligible

Game n

Property
obvious
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Models vs. implementations

ProVerif and CryptoVerif automatically analyze protocol models.

Just that models are very abstract:

Protocol models may miss implementation attacks.

Verified models are good

. . . but verified implementations are much better!
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Generation of implementations (David Cadé)

CryptoVerif
specification

Our Compiler

Protocol Code

OCaml Compiler

Network Code
Cryptographic
primitives

CryptoVerif

Implementation

Proof in the compu-
tational model

Caption: Tool Input Result
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Verified implementations with F?,
https://www.fstar-lang.org/

F? is a new programming language

. . . putting together:
impure functional programming in ML

extracts to OCaml and F#, interoperates

the automation of SMT-based verification systems

like in Why3, Frama-C, Boogie, VCC, Dafny

the expressive power of interactive proof assistants based on dependent
types

like in Coq, Agda, or Lean
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miTLS, http://www.mitls.org/

Formally verified reference implementation of TLS 1.2 in F7/F*
(working towards TLS 1.3)

Written from scratch focusing on verification
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Lead to the discovery of many attacks in TLS
implementations

2
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Conclusion

Verified security protocols at several levels:

Specifications:

In the symbolic model: ProVerif
Available at http://proverif.inria.fr/
In the computational model: CryptoVerif
Available at http://cryptoverif.inria.fr/

Implementations:

Generation of implementations from specifications: CryptoVerif
Direct verification of implementations: F?.
Available at https://www.fstar-lang.org/

See http://prosecco.inria.fr/
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