SMARTGRID SECURITY CHALLENGES AND BEST PRACTICES

> Bruno Rohée Security Architect

AGENDA

- Smartgrid overview
- Hardware challenges and best practices
- Key management challenges and best practices
- Patch management and vulnerability mitigation for connected object

SMARTGRID

Property supply management network using IT to adapt and to optimize networks management.

The three main functions: dematerializing service provision, hypervision and maintenance of networks, metering infrastructure management

All actors benefit from it: smoothing usages means better stability, demand can match offer better, less spare capacity is needed.

SMARTGRID

Lots of sensors/actuator

- Flood detector
- Environmental sensors
- Voltage sensors
- Trip devices
- Smart meters

SMARTGRID SECURITY CHALLENGES AND BEST PRACTICES

Easy for an attacker to steal one of your objects

- Assume some will be stolen and reverse engineered
 - Make reverse engineering harder
 - Make key extraction hard
 - Reduce impact of key extraction
- Cost of installation is a big component of total cost
 - Everything must be done to reduce the need for manual intervention
- General immaturity on security subject in the industry
 - New subject, safety is well known, security is different

FIGHTING REVERSE ENGINEERING

- Tamper evident enclosure
- Alarm on enclosure opening
- Disabling of any debugging interface on production hardware
 - JTAG disabled at end of manufacturing for hardware dedicated to production use
 - Serial console disabled
 - Any other debug interface
- Unmarked IC
 - Makes chips harder to identify : longer => more expensive
- Prefer integrated SoC, preferably BGA
 - RAM snooping is real
- Encrypt firmware in flash

MAKING KEY EXTRACTION HARD

- Secure Element, TPM chips, software based TPM
 - If budget permits
 - Every high end ARM MCU includes a TrustZone

REDUCE IMPACT OF KEY EXTRACTION

- Assume all secrets on a device can be compromised
 - Such compromise should not give any edge to an attacker
 - ⇒ Diversify all symmetric keys

© COPYRIGHT COESSI

IMMATURITY

- This is a new domain, security culture not yet ingrained
 - Connected objects and their challenges are new
 - Manufacturers have little if any culture, many pain points
 - Cryptography : mainly RNG, key management
 - Vulnerability management
 - Devices attack surface
 - Manufacturing may need to be able to securely handle secrets
 - Network isolation, hardening
- Make security contractual
 - Audit facilities and process, right to audit part of the contract
 - Ask for formalized security policies
 - Identified people and channels to handle security matters
- Third party evaluations (CSPN, Common Criteria...)

KEY MANAGEMENT

- Two main categories of connected objects, two set of constrains
 - Low power
 - Low speed, energy and bandwidth constraints
 - Symmetric cryptography only (AES, ChaCha20...) using either AEAD or MAC for authentication
 - High power, fast connection
 - Decent speed, reliable energy source, sometime even good bandwidth
 - ⇒ Asymmetric cryptography possible (RSA, Elliptic Curves)
 - Standard protocols (IPsec, TLS...) a possibility

SYMMETRIC KEY MANAGEMENT

- One object, a set of keys (e.g. SCP03 's ENC, DEK, MAC)
 - Bad strategy : randomly generated and stored
 - Good strategy : diversification, using KDF(device_id|key_version, master_key)

From needing to protects millions of keys, to needing to protect only a few master keys \Rightarrow can use a HSM

- Key rolling issues
 - Need to rotate keys after they have been disclosed
 - Often no assurance that the key roll is effective
 - Need to identify keys
- Key distribution woes
 - You may need

PKI: ASYMMETRIC KEY MANAGEMENT

- One object, one certificate
 - When to enroll?
 - At manufacturing time ; needs automated data exchange between manufacturer and operator
 - Device is ready to use, possibly headless installation
 - What about expiring certificates in stored devices?
 - When first installing the device
 - Needs access to a registration authority at installation time
 - What if network is unavailable?

Each strategy has its challenges, there is a need for auxiliary processes to handle corner cases either way.

© COPYRIGHT COESSI

PATCH MANAGEMENT AND VULNERABILITY MITIGATION FOR CONNECTED OBJECTS

- Firmware updates are slow and failure is expensive
 - Limited bandwidth, shared with data gathering
 - Failure needs manual intervention, possibly remotely
- ⇒ Park managers are understandably squeamish
- But cost of security incident is usually underestimated
 - Need to be able to prove that security fixes won't break anything when deployed
 - Not that hard when the vulnerability is in some code you don't actually use, case for e.g. Heartbleed
 - Which begs the question, why did you ship this code in the first place
- A solid risk analysis (ISO27005, EBIOS...) with impact analysis helps make your case

PATCH MANAGEMENT BEST PRACTICES

- Know your dependencies
- Do watch for new vulnerabilities
- Need to have a dedicated, accelerated, validation procedure for security fixes
 - And you need to be able to make your case to other stakeholders
- Work upfront to lower the need to ship fixes, embark minimal, hardened programs. No one needs OpenSSL in a thermometer!.
- Audit
- Do impact analysis on new vulnerabilities to assess exposure
 - Skilled people able to do that are rare

PATCH MANAGEMENT BEST PRACTICES

- Know your dependencies
- Do watch for new vulnerabilities
- Need to have a dedicated, accelerated, validation procedure for security fixes
 - And you need to be able to make your case to other stakeholders
- Work upfront to lower the need to ship fixes, embark minimal, hardened programs. No one needs OpenSSL in a thermometer!
- Prefer LTS branches
- Audit the software and the configuration
- Do impact analysis on new vulnerabilities to assess exposure
 - Skilled people able to do that are rare

Thank you!

Questions?

 \searrow

herve.daussin@coessi.fr bruno.rohee@coessi.fr

Twitter.com/coessi_fr

© COPYRIGHT COESSI 2017