

General information

CEA List Fabrice AUZANNEAU

fabrice.auzanneau@cea.fr +33 1 69 08 90 60

Targeted topics

SU-INFRA01-2018-	Prevention, detection, response and mitigation of	IA
2019-2020	combined physical and cyber threats to critical	
	infrastructure	
<mark>SU-DS04-2018-2020</mark>	Electrical Power and Energy System	IA
SU-ICT-01-2018 – b)	Dynamic countering of cyber-attacks – strand b)	IA

Competencies

DATA PROTECTION

Ceatech

- *Lightweight cryptography*
 - High performance cryptography for highly constrained things
 - 8bit to 64bit CPU implementations of lightweight stream ciphers, with counters-measures against power/fault-injection attacks
- Homomorphic encryption
 - Computing with encrypted data, without decrypting it: enables processing of confidential data on untrusted servers.
 - CEA compiler transforms C++ algorithm into equivalent, privacypreserving code, with minimal computational overhead.
 - Millisecond bootstrapping scheme to reduce cryptographic noise
- Detection of cyber-attacks in IoT
 - Physical and logical attacks
 - Monitoring and light-weight machine learning techniques

Competencies

CODE PROTECTION

Ceatech

- *Compilation of software countermeasures*
 - Countermeasures against side-channel attacks
 - Code polymorphism: behavioral variability to thwart side-channel attacks.
 - Suitable for computing & memory constrained embedded processors (IoT, mobile applications)
- Countermeasures against fault-injection attacks
 - Fault tolerance, including against multiple fault injections
 - Fault detection & Control-Flow Integrity
 - Fine-grain integrity of program execution: detection of integrity violations at the granularity of a single machine instruction

HW PROTECTION

- Secure hypervision with arm trustzone
 - Data protection & error isolation through memory partitioning and protection.
 - « Blind » hypervision protects from attacks from other domains, and from hypervisor itself
 - Minimal Trusted Computing Base implemented in ARM/TrustZone, security formally verified with static code analysis
 - Experiences of Intel/SGX secure environment
- Many-core systems safety
 - Deterministic execution and interference-free cohabitation of mixed critical applications

