Tab. 6. Facteur de déformation (k_{def}) selon la classe de service et l'humidité H_{bois}

			Classe de servi	ce				
Matériau			1 H _{bois} < 13 %	2 13 % < H _{bois} < 20 %	3 H _{bois} > 20 %			
Essence	Туре	Classe de service (1)	(local chauffé)	(sous abri)	(extérieur)			
Bois massif	-	<u> </u>	0,60	0,80	2,00			
Lamellé-collé	-	_	0,60	0,80	2,00			
Lamibois (LVL)	=	-	0,60	0,80	2,00			
	1	1	0,80	Sans objet	Sans objet			
Contreplaqué	2	2	0,80	1,00	Sans objet			
	3	3	0,80	1,00	2,50			
OSB	OSB/2	1	2,25	Sans objet	Sans objet			
036	OSB/3/4	2	1,50	2,25	Sans objet			
	P4	1	2,25	Sans objet	Sans objet			
Panneau de	P5	2	2,25	3,00	Sans objet			
particules	P6	1 (2)	1,50	Sans objet	Sans objet			
	P7	2 (2)	1,50	2,25	Sans objet			
Panneau de	HB.LA	1	2,25	Sans objet	Sans objet			
fibre dur	HB.HLA	2	2,25	3	Sans objet			
Panneau de	MHB.LA	1	2,25	Sans objet	Sans objet			
fibre semi-dur	MHB.HL S	2	1,50	2,25	Sans objet			
Dannasıı da	MDF.LA	1	2,25	Sans objet	Sans objet			
Panneau de fibre MDF	MDF.HL S	2	1,50	2,25	Sans objet			
(1) On distingue 3								
Classe de service	Utilisation	du bois	Humidité d'équi	libre du bois				
1	Dans un lo	cal chauffé	< 13 % pendant la majorité de l'année, valeur qui être dépassée pendant quelques semaines par an					
2	Dans un chauffé		Comprise entre	13 et 20 % pendant eut être dépassée per	la majorité de			
3	À l'extérieu	ır	> 20 % pendant la	la majorité de l'année				

Familles des combinaisons

– Charges descendantes ELU(STR) :
$$q = \gamma_{G, \text{sup}} G + \gamma_Q Q_1 + \sum_{n=2}^{\infty} \psi_{0,i} \gamma_Q Q_i$$

– Soulèvement ELU(STR et EQU) : $q = \gamma_{G,inf} G + \gamma_Q W$

– Situations accidentelles (excepté l'incendie) :
$$q = G + A + \sum_{n=2}^{\infty} \psi_{2,i} \; Q_i$$

– Situations d'incendie :
$$q = G + \psi_{1,i} Q_1 + \sum_{n=2}^{\infty} \psi_{2,i} Q_i$$

– Déformation instantanée sous charges variables (ELS) :
$$q=Q_1+\sum_{n=2}^{\infty}\psi_{0,i}~Q_i$$

– Déformation totale avec une charge variable (ELS) :
$$q = G + Q_1 + k_{def} (G + \psi_{2,1} Q_1)$$

– Déformation totale avec deux charges variables (ELS)
$$q=G+Q_1+\psi_{0,2}\ Q_2+k_{def}\ (G+\psi_{2,1}\ Q_1+\psi_{2,2}\ Q_2)$$

Tab. 7. Valeurs caractéristiques des matériaux employés

	Résineux C18	acier S235	KERTO Q	
Contrainte de Compression Axiale (fc,0,k) :	18	235	26	N/mm²
Contrainte de Traction Axiale (ft,0,k):	11	235	26	N/mm²
Contrainte de Flexion (fm,k):	18	235	32	N/mm²
Contrainte de Cisaillement (fv,k) :	3.4	136	4.5	N/mm²
Cte de Compression Transversale (fc,90,k):	2.2	235	9	N/mm ²
Contrainte de Traction Transversale (ft,90,k):	0.4	235	6	N/mm²
Module moyen d'Elasticité Axial (E0, mean) :	9000	210000	10500	N/mm²
Module d'Elasticité au fractile 5% (E0,05) :	6000	140000	8800	N/mm²
Module moy. d'Elasticité Transversal (E90,mean) :	300	70000	2400	N/mm ²
Module moyen de Cisaillement (Gmean) :	560	80800	600	N/mm²
Densité Matière (Masse moyenne) :	380	7850	510	kg/m3

Tableau 8 : Valeur de k_{mod} du bois massif, du lamellé-collé, du lamibois (LVL) et du contreplaqué.

Durée de chargement		Classe de servic	e			
Classe de durée	Exemple	1 Hbois < 13% (local chauffé)	2 13% <hbois 20%<br="" <="">(sous abris)</hbois>	3 Hbois > 20 % (extérieur)		
permanente (>10 ans)	Charge de structure	0,6	0,6	0,5		
long terme (6mois à 10 ans)	Stockage	0,7	0,7	0,55		
moyen terme (1 semaine à 6mois)	Charges d'exploitation Neige Altitude >1000m	0,8	0,8	0,65		
court terme (<1semaine) Neige Altitude ≤1000m		0,9	0,9	0,7		
Instantanée	Vent Situation accidentelle Neige exceptionnelle	1,1	1,1	0,9		

Tab. 9. Valeur coefficient γ_M .

Éléments considérés		Υм
Matériaux	Bois	1,3
	Lamellé-collé	1,25
	Lamibois (LVL), OSB	1,2
	Panneaux de particules et de fibres	1,3
Assemblages		1,3
Combinaisons accidentelles		1

Tab. 10. Valeurs limites réglementaires des flèches

	Bâtiments	courants		Bâtiments agricoles et similaires				
	$W_{inst(Q)}$	W _{net,fin}	W _{fin}	$W_{inst(Q)}$	W _{net,fin}	W _{fin}		
Chevrons	1114	L/150	L/125	1/2	L/150	L/100		
Éléments structuraux	L/300	L/200	L/125	L/200	L/150	L/100		

Remarque

- La valeur limite des consoles et porte-à-faux est doublée. Elle est toujours supérieure à 5 mm.
- Les panneaux de planchers et supports de toiture ont une valeur limite de flèche nette finale ($W_{net,fin}$) de L/250.
- La valeur limite de flèche horizontale est de L/200 pour les éléments individuels soumis au vent. Pour les autres applications, elles sont identiques aux valeurs limites verticales des éléments structuraux.

ASSEMBLAGE PAR BOULONS

(3) Il convient que les espacements et distances minimum soient pris à partir du **Tableau 8.4**, avec les symboles illustrés en **Figure 8.7**.

Tableau 8.4 — Espacements et distances minimum pour les boulons

Espacement et distance (voir Figure 8.7)	Angle	Distance minimum				
a ₁ (parallèle au fil)	0° ≤ α ≤ 360°	(4 + cos α) d				
a ₂ (perpendiculaire au fil)	0° ≤ α ≤ 360°	4 d				
a _{3,t} (distance d'extrémité chargée)	- 90° ≤ α ≤ 90°	max (7 d; 80 mm)				
a _{3,c} (distance d'extrémité non chargée)	$90^{\circ} \le \alpha < 150^{\circ}$ $150^{\circ} \le \alpha < 210^{\circ}$ $210^{\circ} \le \alpha \le 270^{\circ}$	max $[(1 + 6 \sin \alpha) d ; 4d]$ 4 d max $[(1 + 6 \sin \alpha) d ; 4d]$				
a _{4,t} (distance de rive chargée)	0° ≤ α ≤ 180°	$\max [(2 + 2 \sin \alpha) d; 3d]$				
a _{4,c} (distance de rive non chargée)	180° ≤ α ≤ 360°	3 d				

(4) Pour une file de n boulons parallèle au fil du bois, il convient que la capacité résistante parallèle au fil soit calculée à partir du nombre efficace $n_{\rm ef}$ d'organes dans la file où :

$$n_{\text{ef}} = \min \begin{cases} n \\ n^{0.9} \sqrt{\frac{a_1}{13d}} & \dots \end{cases}$$
 (8.34)

où:

a₁ est l'espacement entre boulons dans la direction du fil du bois ;

d est le diamètre du boulon ;

n est le nombre de boulons dans une file.

Pour les charges perpendiculaires au fil, il convient que le nombre efficace d'organes soit pris selon :

$$n_{\rm ef} = n \qquad \qquad \dots (8.35)$$

Pour les angles $0^{\circ} < \alpha < 90^{\circ}$ entre la charge et la direction du fil, n_{ef} peut être déterminé par interpolation linéaire entre les équations (8.34) et (8.35).

Résistance au cisaillement du boulon

$$F_{v,Ed} < F_{v,Rd}$$

 $F_{\nu, ED}$: effort de calcul appliqué en cisaillement pour un boulon et un plan de cisaillement.

F_{v,Rd}: résistance de calcul en cisaillement.

Avec:
$$F_{v,Rd} = \frac{\alpha_v \cdot f_{ub} \cdot A}{\gamma_{M2}}$$

 α_v : coefficient.

 f_{ub} : résistance ultime de l'acier du boulon en traction (correspond à f_u pour le calcul du moment d'écoulement plastique de la tige, les deux eurocodes n'ayant pas les mêmes notations).

Tableau 5 : coefficient α_v et résistance ultime

Classe des boulons	4,6	4,8	5,6	5,8	6,8	8,8	10,9	
CV ₄	0,6	0,5	0,6	0,5	0,5	0,6	0,5	
f _{ub} (MPa)	400	400	500	500	600	800	1 000	

A : section résistante en traction du boulon avec A = As si la partie filetée est située dans la zone cisaillée.

Tableau 6 : section résistante en traction des boulons

Diamètre nominal	mm	10	12	14	16	18	20	22	24	27	30	33
A : section nominale	mm ²	79	113	154	201	254	314	380	452	573	707	855
A _s : section résistante de la partie filetée	mm ²	58	84	115	156	192	245	303	352	459	560	693

 $\gamma_{M2} = 1,25$

► Résistance en pression diamétrale

$$F_{v,Ed} < F_{b,Rd}$$

 $F_{v,Ed}$: effort de calcul appliqué en cisaillement sur un boulon et sur une plaque d'épaisseur t.

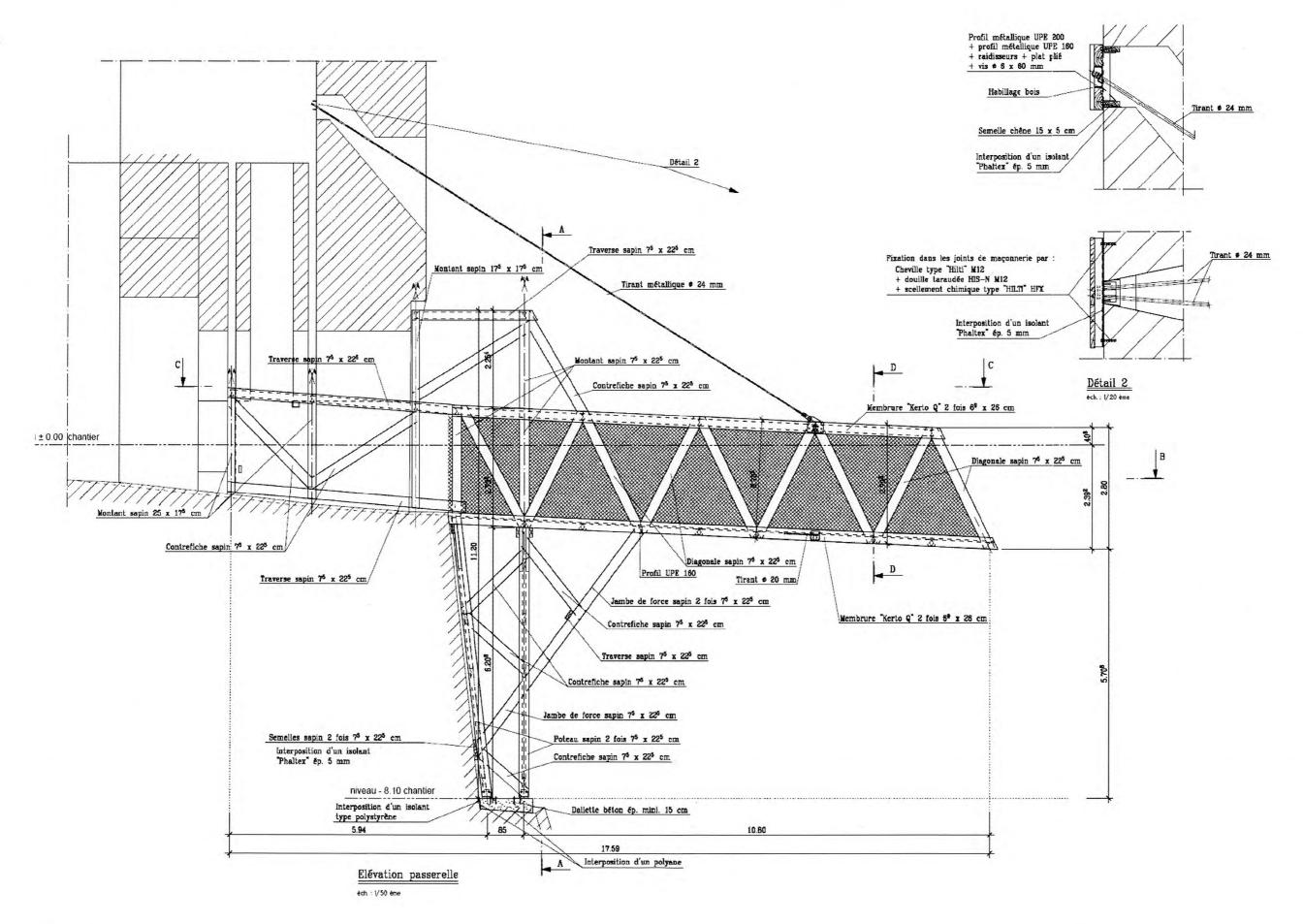
F_{b.Rd}: résistance de calcul en pression diamétrale.

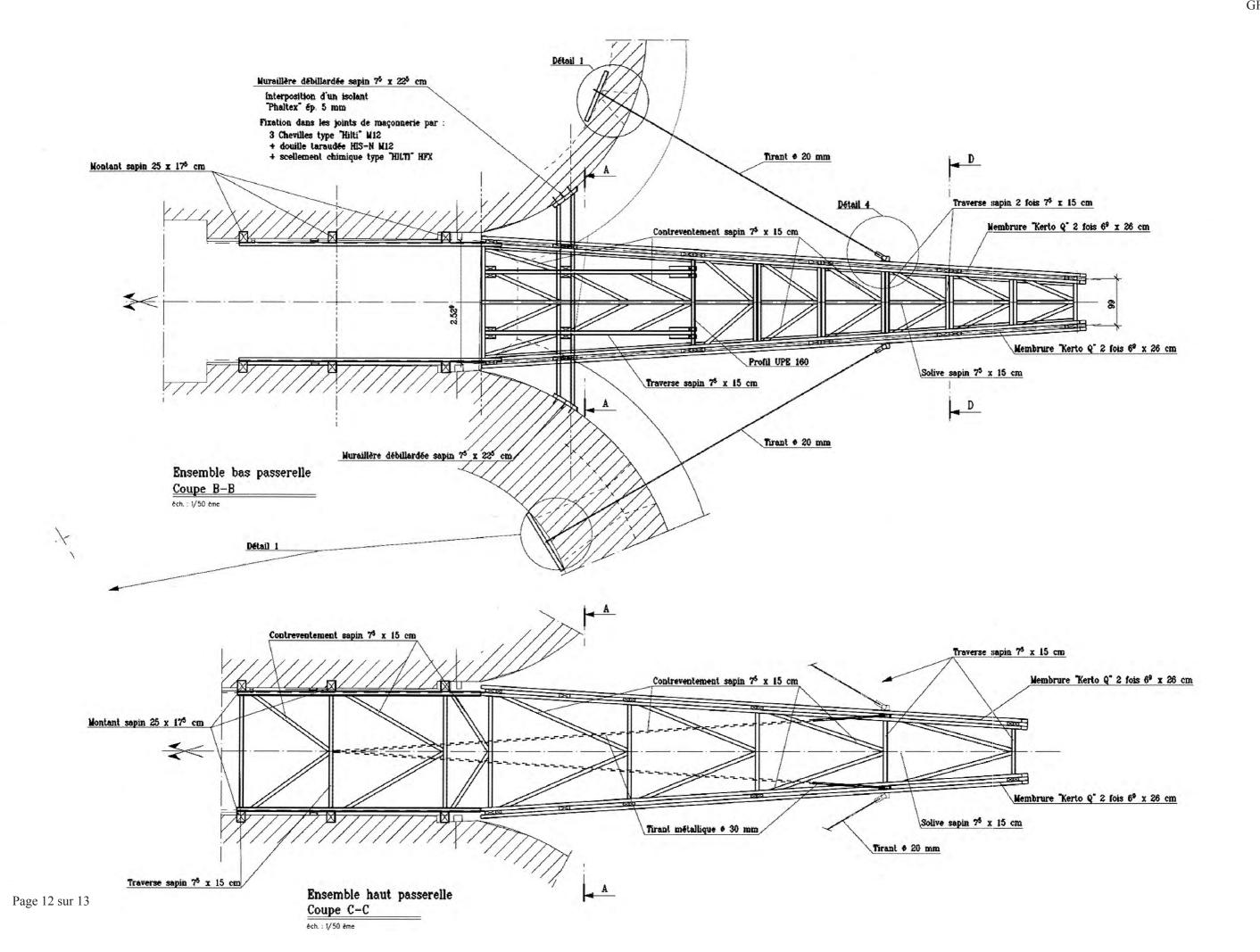
si
$$e_1 = e_2 = 1,5.d_0$$
, alors $F_{b,Rd} \le f_u.d.t$

si
$$e_1 = e_2 = 1,8.d_0$$
, alors $F_{b,Rd} \le 1,2.f_u.d.t$

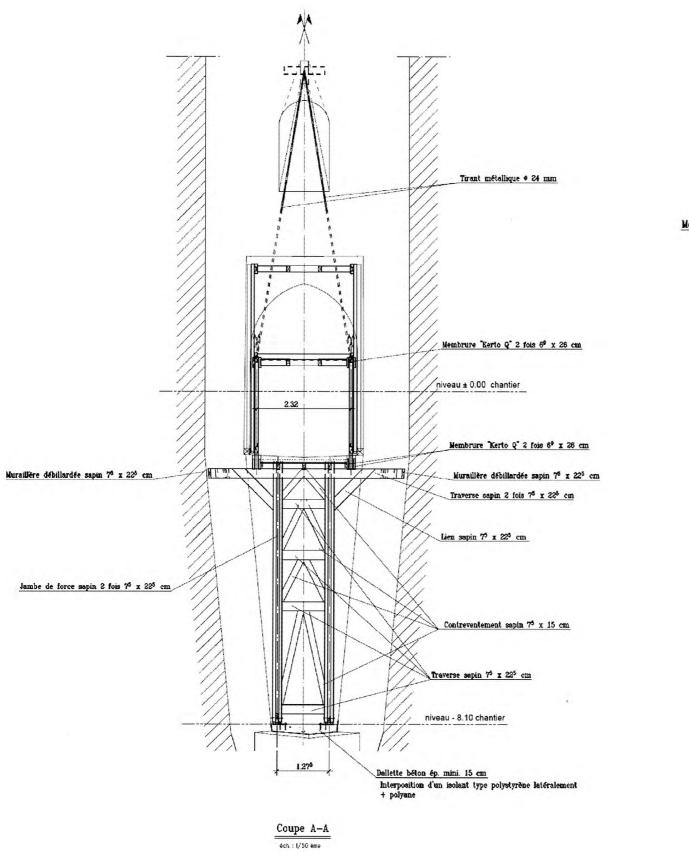
f_u : résistance ultime de l'acier de la plaque.

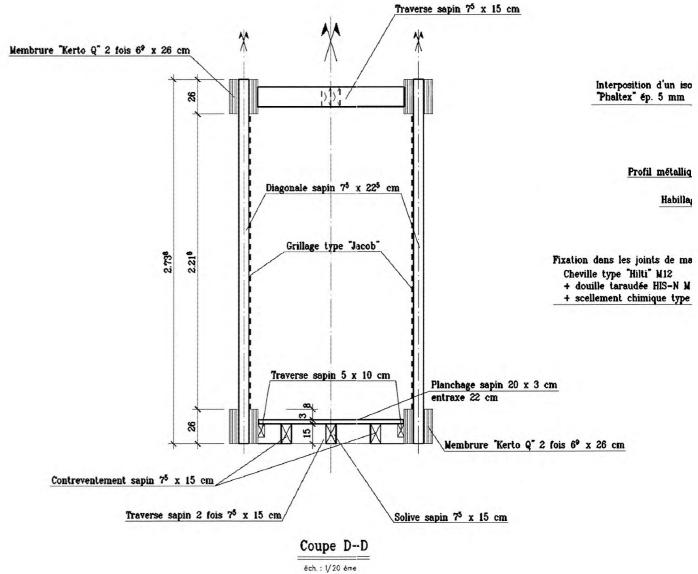
Tableau 7 : résistance ultime de l'acier


Nuance de l'acier	S 235	S 275	S 355	S 450
f _u (MPa)	360	430	510	550

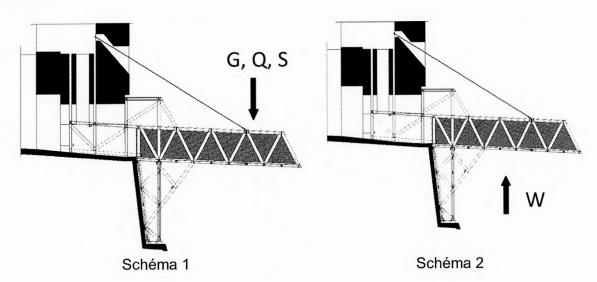

d : diamètre du boulon.

t : épaisseur de la plaque.


Remarque


Pour un trou oblong, si la direction de l'effort est perpendiculaire à l'axe longitudinal du trou, la résistance en pression diamétrale est celle d'un trou circulaire multipliée par le coefficient 0,6.

Dc


Modèle ENSD ©NEOPTEC		一																			
Nom : (Suivi, s'il y a lieu, du nom d'épouse)																					
Prénom :																					
N° d'inscription :											J	lé(e)	le :]/		/				
	(Le nui	méro es	st celui (qui figu	re sur l	a convo	ocation	ou la fe	uille d'	émarge	ement)										
	Con	cour	'S			Sect	ion/0	Optio	n				Epre	uve				Mati	ère		

GFE GIB 1

DR 1 DR 2

Document réponse DR1

Partie 1

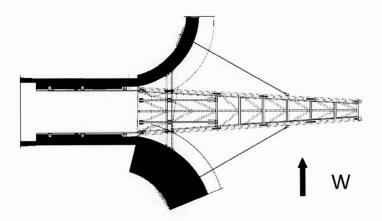
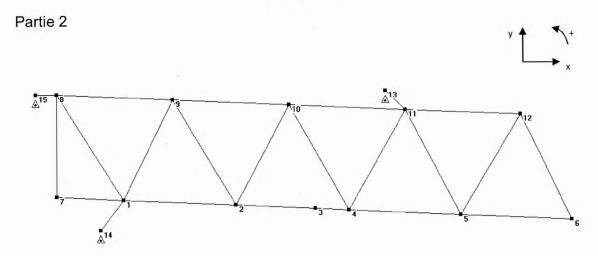
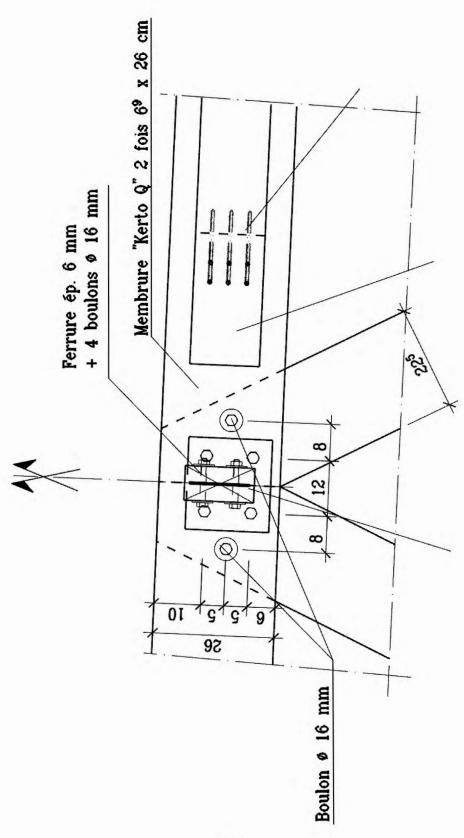




Schéma 3

Document réponse DR2

